[1]
Mallat, S. G, A theory for multiresolution signal decomposition: The wavelet representation, in: IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, 1989, S. 674-693.
DOI: 10.1109/34.192463
Google Scholar
[2]
R.C. Luo and M. G. Kay, Data Fusion and Sensor Integration: State of the Art 1990s, in: M. A. Abidi. and R. C. Gonzalez (eds): Data Fusion in Robotics and Machine Intelligence.
Google Scholar
[3]
G. Pajares, J. Cruz, A wavelet-based image fusion tutorial, Pattern Recognition 37 (9) (2004).
DOI: 10.1016/j.patcog.2004.03.010
Google Scholar
[4]
S. G. Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-11, July 1989, pp.674-693.
DOI: 10.1109/34.192463
Google Scholar
[5]
M. Unser, Texture Classification and Segmentation using Wavelet Frames, IEEE Trans Image Proc., vol. IP-4, November 1995, pp.1549-1560.
DOI: 10.1109/83.469936
Google Scholar
[6]
J.J. Lewis, R.J. Ocallaghan, S.G. Nikolov, Pixel- and region-based image fusion with complex wavelets, Information Fusion 8 (2) (2007) 119–130.
DOI: 10.1016/j.inffus.2005.09.006
Google Scholar
[7]
R. Sabari Banu , Medical Image Fusion by the analysis of Pixel LevelMulti-sensor Using Discrete Wavelet Transform , Proceedings of the National Conference on Emerging Trends in Computing Science, 2011, pp.291-297.
Google Scholar
[8]
Z. Wang , Y . Tie, and Y . Liu , Design and Implementation of Image Fusion System, International Conference on Computer Application and System Modeling (ICCASM), 2010, pp.140-143.
DOI: 10.1109/iccasm.2010.5622856
Google Scholar
[9]
M. Kokar and K. Kim, Review of multisensor data fusion architectures, in Proceeding of the IEEE International Symposium on Intelligent Control, August 1993, p.261–266.
DOI: 10.1109/isic.1993.397703
Google Scholar