Investigation of Annealing Effect on Optoelectronic Performance of Active Layer in Poly Organic Solar Cell

Article Preview

Abstract:

This paper reports mainly a work of the influence of annealing on the solar cell which the active layer is made from poly (3-hexylthiophene) and [6,-phenyl C61 butyric acid methyl ester. XRD analysis of the active layer indicates that the layer annealing can improve the film crystallization. With the reducing of light reflection rate, the light transmittance rate improves due to the annealing treatment of the active layer. Comparing in various annealing temperature, it is found that a better result can be obtained when the annealing temperature is 140 °C. At this annealing temperature, the organic solar cell brings out relatively high conversion efficiency in the experiment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 860-863)

Pages:

69-74

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. K. Siddiki, J. Li, D. Galipeau, Q. Qiao, Energy Environ, Sci., Forum Vol. 3 (2010), pp.867-883.

Google Scholar

[2] J. A. Hauch, P. Schilinsky, S. A. Choulis, R. Childers, M. Biele, C. J. Brabec, Solar Energy Materials and Solar Cells, Forum Vol. 92 (2008), pp.727-731.

DOI: 10.1016/j.solmat.2008.01.004

Google Scholar

[3] S. W. Seemann, J. Li, W. P. Menzel, L. E. Gumley, Journal of Applied Meteorology, Forum Vol. 42(2003), pp.1072-1091.

Google Scholar

[4] T. Kawano, S. Kidoaki, Biomaterials, Forum Vol. 32 (2011), pp.2725-2733.

Google Scholar

[5] H. Ma, C. K. Wang, Y. F. Zhang, C. X. Li, G. H. Jing, Y. R. Jiang, Optoelectronics Advanced Material -Rapid Communications, Forum Vol. 6(2012), pp.78-81.

Google Scholar

[6] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, C. J. Hummelen, Applied Physics Letters, Forum Vol. 78(2001), pp.841-843.

DOI: 10.1063/1.1345834

Google Scholar

[7] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nature Materials, Forum Vol. 6(2007), pp.497-500.

Google Scholar

[8] F. C. Tang, J. Chang, W. Y. Chou, H. L. Cheng, S. L. C. Hsu, J. S. Chen, H. S. Sheu, Physica Status Solidi (a), Forum Vol. 209(2012), pp.369-372.

Google Scholar

[9] P. G. Karagiannidis, N. Kalfagiannis, D. Georgiou, A. Laskarakis, N. A. Hastas, C. Pitsalidis, S. Logothetidis, Journal of Materials Chemistry, Forum Vol. 22(2012), pp.14624-12632.

DOI: 10.1039/c2jm31277h

Google Scholar

[10] G. Del Pozo, B. Romero, B. Arredondo, Solar Energy Materials and Solar Cells, Forum Vol. 104(2012), pp.81-86.

DOI: 10.1016/j.solmat.2012.04.048

Google Scholar

[11] A. Luque, S. Hegedus, John Wiley & Sons Ltd., Chichester (2002).

Google Scholar

[12] S. P. Somani, P. R. Somani, E. Flahaut, G. Kalita, M. Umeno, Japanese Journal of Applied Physics-New Series, Forum Vol. 47(2008), pp.1219-1222.

DOI: 10.1143/jjap.47.1219

Google Scholar

[13] H. Kim, W. W. So, S. J. Moon, Solar Energy Materials and Solar Cells, Forum Vol. 91(2007), pp.581-587.

Google Scholar

[14] R. M. Shalaby, Crystal Research and Technology, Forum Vol. 45(2010), pp.427-432.

Google Scholar