[1]
J. Lorenz, Stability and monotonicity properties of stiff quasi-linear boundary problems. Univ. u Novom Sadu Zb. rad. Prir. -Mat. Fak. Ser. Mat., 12 (1982) 151-175.
Google Scholar
[2]
R. E. O'Malley Jr., Introduction to Singular Perturbations. New York, London: Academic Press, (1974).
Google Scholar
[3]
R. Vulanovi´c, A uniform numerical method for quasi-linear singular perturbation problems without turning points, Computing, 41 (1989) 97-106.
DOI: 10.1007/bf02238732
Google Scholar
[4]
A.S. Bakhvalov, On the optimization of methods for solving boundary value problems with boundary layers, Zh. Vychisl. Mat. i Mat. Fiz. 9 (1969) 841-859 (in Russian).
Google Scholar
[5]
G.I. Shishkin, Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations, Russian Academy of Sciences, Ural Section, Ekaterinburg, 1992 (in Russian).
Google Scholar
[6]
J.J.H. Miller, R.E. O'Riordan, G.I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems. World Scientific, Singapore, (1996).
Google Scholar
[7]
H. -G. Roos, M. Stynes, L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer-Verlag, Berlin, Heidelberg, (2008).
DOI: 10.1007/978-3-662-03206-0
Google Scholar
[8]
M.K. Kadalbajoo, V. Gupta, A brief survey on numerical methods for solving singularly perturbed problems, Appl. Math. Comput. 217 (2010) 3641-3716.
DOI: 10.1016/j.amc.2010.09.059
Google Scholar
[9]
T. Linß, H. -G. Ross, R. Vulanović, Unifrom point-wise convergence on Shishkin-type meshes for quasi-linear covection-diffusion problem, SIAM J. Numer. Anal., 38 (2000) 897-912.
DOI: 10.1137/s0036142999355957
Google Scholar
[10]
T. Linß, Sufficient conditions for uniform convergence on layer-adapted grids, Applied Numerical Math., 37 (2001) 241-255.
DOI: 10.1016/s0168-9274(00)00043-x
Google Scholar
[11]
T. Linß, Uniform second order point-wise convergence of a finite difference discretization for a quasi-linear problem Comput. Math. Math. Phys. 41 (2001) 898-909.
Google Scholar
[12]
V.B. Andreev, N.V. Kopteva, On the convergence, uniform with respect to a small parameter, of monotone three-point difference schemes, Differ. Uravn., 34 (1998).
Google Scholar