Ab Initio Molecular Dynamics Simulations on High-Temperature Reaction Rates of Reactions KO+CO==K+CO2, KO+C=K+CO, and K2O+CO2==K2CO3

Article Preview

Abstract:

In this paper, we present a novel approach for calculating chemical reaction rates based on molecular collision theory, in which molecular collision cross sections are calculated by averaging over all reactive trajectories from ab initio molecular dynamics simulations. The molecular collision radius is determined by both reactive and non-reactive trajectories of molecular dynamics under constant temperature. Thus, both steric and temperature effects have been take into account for molecular collision cross sections. We have applied this approach to calculate reaction rates of reactions KO+CO==K+CO2, KO+C==K+CO, and K2O+CO2==K2CO3 under high temperature. It also shows that under higher temperature, the probabilities of a successful reaction resulting from particle collision are low, because the products are not stable.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

1037-1041

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nabil Rafidi, Wlodzimierz Blasiak, and Ashwani K. Gupta, J. Eng: Gas Turbines Power. 130 (2008) 023001.

Google Scholar

[2] Wei-Chang Lee 1 Shyan-Lung Chung: Journal of the American Ceramic Society. 80 (2008) 53.

Google Scholar

[3] Laurent Thiers, Alexander S. Mukasyan, Aleksey Pelekh and Arvind Varma: Chemical Engineering Journal. 82 (2001) 303.

Google Scholar

[4] G. Y. Anderson, An outlook on Hypersonic Flight, AIAA/SAE/ASEE 23rd Joint Propulsion Conference, San Diego, CA, June 1985, p.87-(2074).

Google Scholar

[5] D. M. Cooper, R. L. Jaffe and J. O. Arnold, J: Spacecraft and Rockets, 22 (1985) 60.

Google Scholar

[6] G. D. Truhlar and J. T. Muckerman, in: Atom-Molecule Collision Theory, ed. by R. B. Bernstein (Plenum Press, New York, 1979), chap. 16.

Google Scholar

[7] M.S. Child, Molecular Collision Theory, (Dover Publications, Mineola, NY 1996).

Google Scholar

[8] R. Car and M. Parrinello: Phys. Rev . Lett. 55, 2471 (1985).

Google Scholar

[9] H. B. Schlegel, S. S. Iyengar, X. Li, J. M. Millam, G. A. Voth, G. E. Scuseria, and M. J. Frisch, J. Chem: Phys. 117, 8694 (2002).

Google Scholar

[10] H. B. Schlegel, J. M. Millam, S. S. Iyengar, G. A. Voth, A. D. Daniels, G. E. Scuseria, and M. J. Frisch, J. Chem: Phys. 114, 9758 (2001).

Google Scholar

[11] S. S. Iyengar, H. B. Schlegel, J. M. Millam, G. A. Voth, G. E. Scuseria, and M. J. Frisch, J. Chem: Phys. 115, 10291 (2001).

Google Scholar

[12] Hakima, Abou-Rachid, private communication.

Google Scholar