[1]
B. Argall, S. Chernova, M. Veloso, and B. Browning: A survey of robot learning from demonstration, Robotics and Autonomous Systems, vol. 57, no. 5, (2009). 469-83.
DOI: 10.1016/j.robot.2008.10.024
Google Scholar
[2]
N.A. Melchior, and R. Simmons: Dimensionality reduction for trajectory learning from demonstration, in 2010 IEEE International Conference on Robotics and Automation. 2953-8.
DOI: 10.1109/robot.2010.5509913
Google Scholar
[3]
A. Billard, S. Calinon, R. Dillmann, and S. Schaal: Robot Programming by Demonstration, in B Siciliano & O Khatib (eds), Springer Handbook of Robotics, Springer (2008), 1371-94.
DOI: 10.1007/978-3-540-30301-5_60
Google Scholar
[4]
B. Price, and C. Boutilier: Accelerating reinforcement learning through implicit imitation., J. Artif. Intell. Res. (JAIR) 19 (2003): 569-629.
DOI: 10.1613/jair.898
Google Scholar
[5]
S. Schaal: Learning From Demonstration, Advances in Neural Information Processing Systems, vol. 9, (1997) pp.1040-6.
Google Scholar
[6]
J. Vogel, C. Castellini, and P. van der Smagt: EMG-based teleoperation and manipulation with the DLR LWR-III, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2011). pp.672-8.
DOI: 10.1109/iros.2011.6094739
Google Scholar
[7]
Dillmann, R 2004, Teaching and learning of robot tasks via observation of human performance, Robotics and Autonomous Systems, vol. 47, no. 2–3, 109-16.
DOI: 10.1016/j.robot.2004.03.005
Google Scholar
[8]
D.A. Forsyth, and J. Ponce: Computer vision : a modern approach, 2nd edn, Pearson, (2012).
Google Scholar
[9]
D. Kragic, and H.I., Christensen: Advances in robot vision, Robotics and Autonomous Systems, (2005), vol. 52, no. 1, 1-3.
Google Scholar
[10]
R. Szeliski: Computer Vision: Algorithms and Applications, Springer, (2011).
Google Scholar
[11]
S. Arivazhagan, R. Shebiah, S. Nidhyanandhan, and L. Ganesan: Fruit Recognition using Color and Texture Features, Journal of Emerging Trends in Computing and Information Sciences, (2010) vol. 1, no. 2,. 80 - 9.
DOI: 10.1109/icccnt.2010.5591562
Google Scholar
[12]
L. Bo, K. Lai, R. Xiaofeng, and D. Fox: Object recognition with hierarchical kernel descriptors, in 2011 IEEE Conference on Computer Vision and Pattern Recognition. 1729-36.
DOI: 10.1109/cvpr.2011.5995719
Google Scholar
[13]
J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake: Real-time human pose recognition in parts from single depth images, in 2011 IEEE Conference on Computer Vision and Pattern Recognition. 1297-304.
DOI: 10.1109/cvpr.2011.5995316
Google Scholar
[14]
D.H. Grollman and O.C. Jenkins: Incremental learning of subtasks from unsegmented demonstration, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 261-6.
DOI: 10.1109/iros.2010.5650500
Google Scholar
[15]
C. Bishop: Embracing uncertainty: applied machine learning comes of age., Machine Learning and Knowledge Discovery in Databases (2011): 4-4.
DOI: 10.1007/978-3-642-23780-5_3
Google Scholar
[16]
Y. Zhu and K. Fujimura: Constrained Optimization for Human Pose Estimation from Depth Sequences, in Y Yagi, S Kang, I Kweon & H Zha (eds), Computer Vision – ACCV 2007, Springer (2007) vol. 4843, 408-18.
DOI: 10.1007/978-3-540-76386-4_38
Google Scholar
[17]
R.B. Rusu and S. Cousins: 3D is here: Point Cloud Library (PCL), in 2011 IEEE International Conference on Robotics and Automation, 1-4.
DOI: 10.1109/icra.2011.5980567
Google Scholar
[18]
M.A. Fischler, and R.C. Bolles: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, (1981) 24(6), 381-395.
DOI: 10.1145/358669.358692
Google Scholar
[19]
N.M. Kwok, Q.P. Ha, and G. Fang: Effect of color space on color image segmentation. " In 2nd International Congress on Image and Signal Processing, 2009. CISP, 09., 1-5. IEEE, (2009).
DOI: 10.1109/cisp.2009.5304250
Google Scholar