Synthesis and Characterization of Ni/Al2O3 Nanocomposite for Selective Reduction of Aliphatic Double Bond(s)

Article Preview

Abstract:

Ni nanoparticles dispersed in Al2O3 are prepared in-situ by the reduction of Ni(acac)2 under steady stream of [H2Al(OtBu)]2 in a cold walled CVD reactor. The decomposition temperature is moderate (~500°C) and the by-products are removed as soon as produced. The resulting powder of Ni/Al2O3 nanocomposite is characterized by powder XRD giving diffraction pattern for metallic Ni only. Elemental composition of the powder is confirmed by EDX analysis. SEM and TEM are used for the study of morphology and particle size determination. The aliphatic double bond in 1,2-trans-diphenylethene is reduced under hydrogen environment using the as prepared Ni/Al2O3 nanocomposite as catalyst. The reduction of 1,2-trans-diphenylethene is carried out at low temperature (~80°C) and atmospheric hydrogen pressure. The hydrogenation of aliphatic double bond is followed by IR and NMR spectroscopy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

346-350

Citation:

Online since:

February 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.H.C. Camargo, K.G. Satyanarayana and F. Wypych: Materials Research Vol. 12 (2009), p.1.

Google Scholar

[2] A. Kamyabi-Gol, S.M. Zebarjad and S.A. Sajjadi: J Sol-Gel Sci. Technol Vol. 51 (2009), p.92.

Google Scholar

[3] S. Nandy, S. Mallick, P.K. Ghosh, D.C. Das, S. Mukherjee, M.K. Mitra and K.K. Chattopadhyay: J. Alloy. Compd. Vol. 453 (2008), p.1.

Google Scholar

[4] E. Fritscher: Dissertation (University of Saarland, 1997).

Google Scholar

[5] K. Valtchev: Dissertation (Saarbrücken, 2002).

Google Scholar

[6] T. Okubo, M. Watanabe, K. Kusakabe and S. Morooka: Key Engineering Materials Vol. 61-62 (1992), p.71.

Google Scholar

[7] J. Juan-Juan, M.C. Roman-Martinez and M.J. Illan-Gomez: Applied Catalysis A Vol. 264 (2004), p.169.

Google Scholar

[8] R.R. Oberle, M.R. Scanlon, R.C. Cammarata and P.C. Searson: Appl. Phys. Lett. Vol. 66 (1995), p.19.

Google Scholar

[9] T.F. Grigore'eva, I.A. Vorsina, A.P. Barinova, S.V. Tsybulya, O.A. Bulavchenko and N.Z. Lyakhov: Russian Metallurgy (Mettally) Vol. 351 (2009), p.3.

DOI: 10.1134/s0036029509040120

Google Scholar

[10] M. Lindblad, L.P. Lindfors and T. Suntola: Catalysis Letters Vol. 27 (1994), p.323.

Google Scholar

[11] D. Vanoppen, M. Veith and K. Valtchev, U S Patents 7, 026, 269 B2. (2006).

Google Scholar

[12] M. Veith, S. Faber, H. Wolfanger and V. Huch: Chem. Ber. Vol. 129 (1996), p.381.

DOI: 10.1002/cber.19961290403

Google Scholar

[13] M. Veith and S. Kneip: Jouranl of Material Sciences Letters Vol. 13 (1994), p.335.

Google Scholar

[14] M. Veith, E. Sow, U. Werner, C. Petersen and O.C. Aktas: Eur. J. Inorg. Chem. (2008), p.5181.

Google Scholar

[15] B. Sasi and K.G. Gopchandran: Solar Energy Materials and Solar Cells Vol. 91 (2007), p.1505.

Google Scholar