First–Principles Study Including Zero Point Energy on Hydrogen in Palladium for Hydrogen Membranes Applications

Article Preview

Abstract:

Density functional theory calculations at the generalized gradient approximation level are performed on cube clusters that comprise both the metal lattice (Pd) and the interstitial lattice (H). The calculations consider H on the octahedral sites of the metal lattice, i.e., cubes structures Pd4H4-x (x=0–4). For each structure, the cell volume, the total energy, the bulk modulus and the derivative of the bulk modulus have been calculated. Zero point energy (ZPE) corrections have been included using the direct method. The calculations confirm that including ZPE effects in the harmonic approximation has a significant effect on the calculated properties by increasing the cell-volumes and decreasing the bulk modulus. The absorption energies of hydrogen in palladium without including ZPE are found to be exothermic processes. When the ZPE is included, adding the first three Hs atom are exothermic processes while the fourth atom is found to be endothermic.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 875-877)

Pages:

635-641

Citation:

Online since:

February 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.M. Mueller, J.P. Blackledge, G.G. Libowitz (Eds. ), Metal Hydrides, Academic Press, New York, (1968).

Google Scholar

[2] G. Alefeld, J. Vo¨lkl (Eds. ), Hydrogen in Metals I. Basic Properties, Springer–Verlag, Berlin, (1978).

Google Scholar

[3] G. Alefeld, J. Vo¨lkl (Eds. ), Hydrogen in Metals II. Application oriented Properties, Springer–Verlag, Berlin, (1978).

Google Scholar

[4] H. Wipf (Ed. ), Hydrogen in Metals III. Properties and Applications, Springer–Verlag, Berlin, (1997).

Google Scholar

[5] Paglieri SN, Way JD. Sep Purif Methods 31 (2002) 1.

Google Scholar

[6] I.E. Worsham, M.K. Wilkinson, C.G. Shull, J. Phys. Chem. Solids 3 (1957) 303–310.

Google Scholar

[7] R. Kikuchi, Phys. Rev. B 81 (1951) 988–1003.

Google Scholar

[8] R. Kikuchi, J. Chem. Phys. 60 (1974) 1071–1080.

Google Scholar

[9] D. De Fontaine, in: H. Ehrenreich, D. Turnbull (Eds. ), Solid State Physics, vol. 47, Academic Press, New York, (1994) 33–176.

Google Scholar

[10] J.M. Sanchez, J.R. Barefoot, R.N. Jarrett, J.K. Tien, Acta Metall. 32 (1984) 1519–1525.

Google Scholar

[11] M. Enomoto, H. Harada, Metall. Trans. A 20 (1989) 649–664.

Google Scholar

[12] T. Mohri, J.M. Sanchez, D. de Fontaine, Acta Metall. 33 (1985) 1171–1185.

Google Scholar

[13] C. Colinet, in: J.L. Mor´an-L´opez, J.M. Sanchez (Eds. ), Theory and Applications of the Cluster Variation and Path Probability Methods, PlenumPress, New York, (1996) 313–340.

Google Scholar

[14] Nanu D.E., Deng Y., Böttger A.J., Phys. Rev. B74 (2006) 014113.

Google Scholar

[15] P. Hohenberg and W. Kohn, Phys. Rev., 136 (1964) B864.

Google Scholar

[16] W. Kohn and L. J. Sham, Phys. Rev., 140 (1965) A1133.

Google Scholar

[17] G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter, 47 (1993) 558.

Google Scholar

[18] G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter, 49 (1994) 14251.

Google Scholar

[19] G. Kresse and J. Furthmüller, Comput. Mater. Sci., 6 (1996) 15.

Google Scholar

[20] G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter, 54 (1996) 11169.

Google Scholar

[21] P. E. Blöchl, Phys. Rev. B: Condens. Matter, 50 (1994) 17953.

Google Scholar

[22] G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys., 59 (1999) 1758.

Google Scholar

[23] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B: Condens. Matter, 46 (1992) 6671.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[24] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B: Condens. Matter,  48 (1993) 4978.

DOI: 10.1103/physrevb.48.4978.2

Google Scholar

[25] Dario Alfè, Computer Physics Communications 180 (2009) 2622–633.

Google Scholar

[26] Teter DM, Gibbs GV, Boisen MB. Phys Rev B (52) 1995 8064.

Google Scholar

[27] S. Shang and A.J. Böttger, Acta Materialia 53 (2005) 255–264.

Google Scholar

[28] O.M. Løvvik andR.A. Olsen, Journal of Alloys and Compounds 330–332 (2002) 332–337.

Google Scholar

[29] X. Ke, G.J. Kramer and O.M. Løvvik, J. Phys.: Condens. Matter 16 (2004) 6267–6277.

Google Scholar

[30] B.R. Coles, J. Inst. Metals 84 (1956) 346.

Google Scholar

[31] M. Ko¨rling, J. Ha¨glund, Phys. Rev. B 45 (1992) 13293.

Google Scholar

[32] P.H.T. Philipsen, E.J. Baerends, Phys. Rev. B 61 (1999) 1773.

Google Scholar

[33] C. Kittel, Introduction to Solid State Physics, 7th Edition, Wiley, New York, (1996).

Google Scholar

[34] A.J. Böttger, D.E. Nanu , A. Marashdeh, to be submitted.

Google Scholar