[1]
Z. Sun, S. S. Ge, Switched Linear Systems, London, England: Springer, (2005).
Google Scholar
[2]
L. Dai, Singular Control Systems, New York, USA: Springer, (1989).
Google Scholar
[3]
J. S. Chiou, C. J. Wang, and C. M. Cheng, On delay-dependent stabilization analysis for the switched time-delay systems with the state-driven switching strategy, Journal of the Franklin Institute, vol. 348, pp.261-276, (2011).
DOI: 10.1016/j.jfranklin.2010.11.006
Google Scholar
[4]
W. Feng, J. Tian, and P. Zhao, Stability analysis of switched stochastic systems, Automatica, vol. 47, pp.148-157, (2011).
DOI: 10.1016/j.automatica.2010.10.023
Google Scholar
[5]
X. W. Liu, and C. Y. Dang, Stability Analysis of Positive Switched Linear Systems with Delays, IEEE Transactions on Automatic Control, Vol. 56, pp.1684-1690, (2011).
DOI: 10.1109/tac.2011.2122710
Google Scholar
[6]
Y. Chen, L. X. Zhang, and H. R. Karimi, et al, Stability Analysis and H∞ Controller Design of a Class of Switched Discrete-Time Fuzzy Systems, Proc. of the 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, pp.6159-6164, (2011).
DOI: 10.1109/cdc.2011.6161132
Google Scholar
[7]
K. S. Narendra and J. Balakrishnan, A common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Trans. on Automatic Control, vol. 39, pp.2469-2471, (1994).
DOI: 10.1109/9.362846
Google Scholar
[8]
D. Liberzon, J. P. Hespanha, and A. S. Morse, Stability of switched systems: a Lie-algebraic condition, Systems & Control Letters, vol. 37, pp.117-122, (1999).
DOI: 10.1016/s0167-6911(99)00012-2
Google Scholar
[9]
J. P. Hespanha and A. S. Morse, Stability of switched systems with average dwell-time, Proc. of the 38th IEEE Conference on Decision and Control, Phoenix, USA, pp.2655-2660, (1999).
DOI: 10.1109/cdc.1999.831330
Google Scholar
[10]
M. A. Wicks, P. Peleties, and R. A. DeCarlo, Construction of piecewise Lyapunov functions for stabilizing switched systems, Proc. of the 33rd IEEE Conference on Decision and Control, Orlando, USA, pp.3492-3497, (1994).
DOI: 10.1109/cdc.1994.411687
Google Scholar
[11]
S. Pettersson and B. Lennartson, LMI for stability and robustness of hybrid systems, Proc. of the American Control Conference, Albuquerque, USA, pp.1714-1718, (1997).
DOI: 10.1109/acc.1997.610877
Google Scholar
[12]
M. A. Wicks, P. Peleties, and R. A. DeCarlo, Switched controller design for the quadratic stabilization of a pair of unstable linear systems, European Journal of Control, vol. 4, pp.140-147, (1998).
DOI: 10.1016/s0947-3580(98)70108-6
Google Scholar
[13]
G. Zhai, R. Kou, and J. Imae, et al, Stability analysis and design for switched descriptor systems, International Journal of Control, Automation, and Systems, vol. 7, pp.349-355, (2009).
DOI: 10.1007/s12555-009-0303-8
Google Scholar
[14]
G. Zhai, X. Xu, and J. Imae, et al, Qualitative Analysis of Switched Discrete-Time Descriptor Systems, International Journal of Control, Automation, and Systems, vol. 7, pp.512-519, (2009).
DOI: 10.1007/s12555-009-0402-6
Google Scholar
[15]
M. Chadli, and M. Darouach, Robust admissibility of uncertain switched singular systems, International Journal of Control, vol. 84, pp.1587-1600, (2011).
DOI: 10.1080/00207179.2011.615865
Google Scholar
[16]
J. X. Lin, S. M. Fei, and J. Shen, Robust stability and stabilization for uncertain discrete-time switched singular systems with time-varying delays, Journal of Systems Engineering and Electronics, vol. 21, pp.650-657, (2010).
DOI: 10.3969/j.issn.1004-4132.2010.04.019
Google Scholar
[17]
B. Men, X. S. Li, and X. Y. Ou, Stabilization for a class of discrete-time switched linear singular systems, International Conference on Materials Engineering for Advanced Technologies, Singapore, vol. 480-481, pp.1406-1411, (2011).
DOI: 10.4028/www.scientific.net/kem.480-481.1406
Google Scholar