Research on Applied Technology in Comparison of the Traditional Inversion Method and the AIC Method

Article Preview

Abstract:

Regularization item, subject to data misfit is used to stabilize the inversion problem. In selection of the trade-off parameter the Akaiche Information Criterion (AIC) has been applied to and compared to the chi-square misfit criterion. For the AIC we can achieve the trade-off parameter more conveniently by minimizing the AIC fuction. The result shows the AIC works well with an agreement to one accomplished from the Chi-square method. The result is very meaningful about applied technology of ocean science and geophysics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

528-531

Citation:

Online since:

January 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.C. Hansen ,D.P. O'Leary. the use of L-curve in the regularization of discrete ill-posed problem[J]. SIAM Journal of Scientific computing, Vol. 14, pp.1487-15083, (1993).

DOI: 10.1137/0914086

Google Scholar

[2] P.C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve[J]. SIAM Review, Vol. 34, No. 4, pp.561-580, (1999).

DOI: 10.1137/1034115

Google Scholar

[3] D. Krawczyk-Stando ,M. Rudnicki. Regularised synthesis of the magnetic field using the L-curve approach[J]. International Journal of Applied Electromagnetics and Mechanics, Vol. 22, No. 3, 4, pp.233-242, (2005).

DOI: 10.3233/jae-2005-706

Google Scholar

[4] D. Krawczyk-Stando , M. Rudnicki. The use of L-Curve and U-Curve in inverse electromagnetic modeling[J]. Studies in Computational Intelligence, 119, 73-82, (2008).

DOI: 10.1007/978-3-540-78490-6_9

Google Scholar

[5] D. Krawczyk-Stando ,M. Rudnicki. Regularization parameter in discrete ill-posed problems- the use of the U-curve[J]. International Journal of Applied Mathematics and Computer Science, Vol. 17, pp.101-108, (2007).

DOI: 10.2478/v10006-007-0014-3

Google Scholar

[6] S. Dosso , M. R. Fallat. Array element localization for horizontal arrays via Occam's inversion[J]. J. Acoust. Soc. Am. 104, 846-859, (1998).

DOI: 10.1121/1.423359

Google Scholar

[7] Y. Mitsuhata,T. Uchida, Y. Murakami , H. Amano. The Fourier transform of controlled-source time-domain electromagnetic data by smooth spectrum inversion[J]. Geophys. J. Int., 144, 123-135.

DOI: 10.1046/j.1365-246x.2001.00324.x

Google Scholar

[8] S. Constable, R.L. Parker , C.G. Constable. Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Vol. 52, No. 3, pp.289-300 (1987).

DOI: 10.1190/1.1442303

Google Scholar