[1]
Cao W Q, Wang C, Wang C Y, et al. Microstructures and mechanical properties of the third generation automobile steels fabricated by ART-annealing[J]. Science China Technological Sciences, 2012, 55(7): 1814-1822.
DOI: 10.1007/s11431-012-4877-7
Google Scholar
[2]
Dong H, Cao W Q, Shi J, , et al. Control technology of microstructure and properties of the third generation of automotive steel[J]. iron, 2011, 46(6): 1-11.
Google Scholar
[3]
Olefjord I, Leijon W, Jelvestam U. Selective surface ace oxidation during annealing of steel sheets in H2/N2 [J]. Applications of surface science, 1980, 6(3): 241-255.
DOI: 10.1016/0378-5963(80)90015-x
Google Scholar
[4]
Grabke, H.J., V. Leroy and H. Viefhaus, Segregation on the Surface of Steels in Heat Treatment and Oxidatio. ISIJ international, 1995. 35(2): pp.95-113.
DOI: 10.2355/isijinternational.35.95
Google Scholar
[5]
Drillet, P., et al., Selective oxidation of high Si, Mn and Al steel grades during recrystallization annealing and steel/Zn reactivity. Revue de Métallurgie, 2004. 101(10): pp.831-837.
DOI: 10.1051/metal:2004154
Google Scholar
[6]
Bellhouse, E.M. and J.R. McDermid, Analysis of the Fe–Zn interface of galvanized high Al–low Si TRIP steels. Materials Science and Engineering: A, 2008. 491(1): pp.39-46.
DOI: 10.1016/j.msea.2007.12.033
Google Scholar
[7]
Maki, J., et al., Galvanisability of silicon free CMnAl TRIP steels. Materials science and technology, 2003. 19(1): pp.125-131.
DOI: 10.1179/026708303225009300
Google Scholar
[8]
Bordignon, L. and J. Crahay, Dynamic effects in galvanising of high strength steels. Proceedings of Galvatech, Brussels, Belgium, 2001: p.573.
Google Scholar
[9]
Strohmeier B R, Hercules D M. Surface spectroscopic characterization of manganese/aluminum oxide catalysts[J]. The Journal of Physical Chemistry, 1984, 88(21): 4922-4929.
DOI: 10.1021/j150665a026
Google Scholar
[10]
J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomber, Handbook of X-ray. Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, MN, 1995).
Google Scholar
[11]
Norden, M., et al., The change of steel surface chemistry regarding oxygen partial pressure and dew point. Applied Surface Science, (2013).
DOI: 10.1016/j.apsusc.2012.12.103
Google Scholar
[12]
Blumenau, M., et al., Impact of selective oxidation during inline annealing prior to hot-dip galvanizing on Zn wetting and hydrogen-induced delayed cracking of austenitic FeMnC steel. Surface and Coatings Technology, 2011. 206(2): pp.542-552.
DOI: 10.1016/j.surfcoat.2011.07.081
Google Scholar
[13]
Alibeigi, S., et al., Reactive wetting of high Mn steels during continuous hot-dip galvanizing. ActaMaterialia, 2011. 59(9): pp.3537-3549.
DOI: 10.1016/j.actamat.2011.02.027
Google Scholar
[14]
Blumenau, M., et al., Use of pre-oxidation to improve reactive wetting of high manganese alloyed steel during hot-dip galvanizing. Surface and Coatings Technology, 2011. 206(2): pp.559-567.
DOI: 10.1016/j.surfcoat.2011.07.088
Google Scholar
[15]
Li Y P, Jiang S M, Zhang Q F , Effect of dual phase steel aluminum content on the morphology of the surface oxide and inhibition layer. Journal of iron and Steel Research. 2012. 24(5): pp.29-34.
Google Scholar
[16]
Li, Y., et al., Influence of soaking duration on the selective oxidation and galvanizability of a high‐strength dual phase steel. Surface and Interface Analysis, 2012. 44(4): pp.472-477.
DOI: 10.1002/sia.3829
Google Scholar
[17]
Neil Gao, et al., optimizing bath Al level for improved galvanizability of advanced high strength steels. Galvatech'(2011).
Google Scholar
[18]
Eynde, X.V., J.P. Servais and M. Lamberigts. Surface oxide maturation and self-reduction: a new process to ensure TRIP steel hot dip galvanizing. inGalvatech. (2004).
Google Scholar
[19]
Bellhouse, E.M., A. Mertens and J.R. McDermid, Development of the surface structure of TRIP steels prior to hot-dip galvanizing. Materials Science and Engineering: A, 2007. 463(1): pp.147-156.
DOI: 10.1016/j.msea.2006.09.117
Google Scholar
[20]
Blumenau, M., et al., Reactive wetting during hot-dip galvanizing of high manganese alloyed steel. Surface and Coatings Technology, 2011. 205(10): pp.3319-3327.
DOI: 10.1016/j.surfcoat.2010.11.053
Google Scholar
[21]
Sagl, R., et al., The role of surface oxides on annealed high-strength steels in hot-dip galvanizing. Corrosion Science, (2013).
DOI: 10.1016/j.corsci.2013.01.039
Google Scholar
[22]
Kavitha, R. and J.R. McDermid, On the in-situ aluminothermic reduction of manganese oxides in continuous galvanizing baths. Surface and Coatings Technology, (2012).
DOI: 10.1016/j.surfcoat.2012.09.038
Google Scholar