Theoretical Study on the Isomerization Reaction Mechanism of the Chain-Isomers of N9H9

Article Preview

Abstract:

Density functional theory B3LYP method with 6-311++G** basis set has been used to optimize Chain-isomers of N9H9. Sixteen species are found, the structures, stabilities, thermochemical properties, and their tautomerism are studied and discussed. The ten corresponding transition states have been found. The experimental results indicated that the reaction energy barriers of isomerization of these isomers were between 139.56 kJ/mol and 236.67kJ/mol. The activation energies is higher, the isomerization of these isomers is relatively difficult. The isomerization processes of these chain-isomers of N9H9 are all completed by the H transfer.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

677-683

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Evangelisti. J. Phys. Chem A. 102(1998), p.4925.

Google Scholar

[2] L. J Wang, P.G. Mezey. Chem. Phys. Letters. 387(2004) p.233. (in chinese).

Google Scholar

[3] K.O. Christe, A.D. David, D. McLemore. J. Fluorine. Chem. 101(2000) p.151.

Google Scholar

[4] M. Hiskey, D.E. Chavez, D.L. Naud. Proc Int. Pyrotech. Semin. 27(2000) p.3.

Google Scholar

[5] H.E. Von, D. Ornellas, M.F. Foltz, et al. Propellants Explos. Pyrotech. 19(1994) p.206.

Google Scholar

[6] S. Benazet, G. Jacob. Propellants Explos. Pyrotech. 28(2003) p.287.

Google Scholar

[7] X.T. Su, L.C. Li, Y.W. Wang, et al. Acta. Chimica. Sinica. 65(2007) p.1975. (in chinese).

Google Scholar

[8] L.E. Fried, M.R. Manaa, P.F. Pagoria, et al. Annu. Rev. Mater. Res. 31(2001) p.291.

Google Scholar

[9] M.H.V. Huynh, M.A. Hiskey, E. Hartline, et al. Chem. Int. Ed. 43(2004) p.4924.

Google Scholar

[10] P.A. Giguère, I.D. Liu. J. Chem. Phys. 20(1952) p.136.

Google Scholar

[11] U. Schurath, R.N. Schindler. J. Phys. Chem. 74(1970) p.3188.

Google Scholar

[12] B.M. Gimarc. J. Phys. Chem. 98(1994) p.7497.

Google Scholar

[13] W.B. David. J. Mol. Struct: Theochem. 619(2002) p.37.

Google Scholar

[14] S. Mao, Y.X. Tan, X.M. Pu, et al. Acta. Physico-Chimica. Sinica. 24(2008) p.981. (in chinese).

Google Scholar

[15] L.C. Li, J. Shang, J.L. Liu, et al. J. Mol. Struct: Theochem. 807(2007) p.207. (in chinese).

Google Scholar

[16] S. Li, L.C. Li, X. Wang, et al. Acta. Chimica. Sinica. 66(2008) p.1307. (in chinese).

Google Scholar

[17] S. Mao, X.M. Pu, L.C. Li, et al. Acta. Chimica. Sinica. 64(2006) p.1429. (in chinese).

Google Scholar

[18] S. Mao, X.M. Pu, L.C. Li, et al. J. Atomic. Mol. Phys. 28(2011) p.881. (in chinese).

Google Scholar

[19] U. Magdalena, K. Stanislaw, P. Mateusz. Appl. Catalysis A: General. 451(2013) p.101.

Google Scholar

[20] H.Y. Wu, W.F. Cai, L.C. Li, et al. J. Comput. Chem. 32(2011) p.2555. (in chinese).

Google Scholar

[21] S. Zhang, W.F. Cai, L.C. Li, et al. J. Atom. Mol. Phys. 28(2011) p.243. (in chinese).

Google Scholar

[22] J.C. Tao, F.S. Sun, F. Tao. J. Organometallic Chem. 698(2012) p.1.

Google Scholar

[23] G. Marcin, K. Robert, K. Jacek. Chem. Phy. Letters. 582(2013) P. 56.

Google Scholar