[1]
B. Paul, in: Triaxial Testing of Ice: A Survey of Previous Investigations. Proceedings of the 16 International Conference on the Port and Ocean Engineering under Arctic Conditions. POAC' 01 August 12-17, Ottawa, Ontario, Canada (2001).
Google Scholar
[2]
S.J. Jones, in: Triaxial testing of polycrystalline of ice. Proc. 3rd Int. Conf. Permafrost, Edmonton, Vol. 1, 671-674 (1978).
Google Scholar
[3]
S.J. Jones. Journal of Glaciology, Vol. 28 (1982), pp.171-177.
Google Scholar
[4]
S. J. Jones. R.E. Gagnon, A. Derradji. Can. J. Phys. Vol. 81 (2003), p.191–200.
Google Scholar
[5]
Y. Mizuno. Journal of Physical Chemistry B, Vol. 102 (1998), pp.376-381.
Google Scholar
[6]
P. Kalifa. G. Quillon. P. Duval. Journal of Glaciology. Vol. 38 (1992).
Google Scholar
[7]
R. E. Gagnon. P.H. GA. Vimon. Journal of Glaciology, Vol. 41(1995), pp.528-540.
Google Scholar
[8]
X.T. Xu. Y.M. Lai. Y.H. Dong. et al. Cold Regions Science and Technology, Vol. 69 (2011), pp.98-104.
Google Scholar
[9]
A. Assur. In:. Some promising trends in ice mechanics. Physics and Mechanics of Ice. Berlin: Springer Verlag, p, 1-15 (1980).
DOI: 10.1007/978-3-642-81434-1_1
Google Scholar
[10]
S.J. Jones. A.M. Chew. Journal of Physical Chemistry Vol. 87(1983), pp.4064-4066.
Google Scholar
[11]
Melanson, et al., Journal of Glaciology Vol. 45 (1999), pp.417-422.
Google Scholar
[12]
P.D. Barrette. I.J. Jordann. in: Creep of ice and microstructural changes under confining pressure. S. Murakami and N. Ohno. IUTAM Symposium on Creep in Structures. Kluwer Academic Publ., Boston, 479-488 (2001).
DOI: 10.1007/978-94-015-9628-2_46
Google Scholar