Skyrmion Excitations in Graphene

Article Preview

Abstract:

By making use of the φ-mapping topological current theory and the decomposition of gauge potential theory, we investigate the skyrmion excitations of (2+1)-dimensional graphene. It is shown that the topological numbers are Hopf indices and Brower degrees. Based on the bifurcation theory of the φ-mapping theory, it is founded that the skyrmions can be generated or annihilated at the limit point (the generation and annihilation of skyrmion-antiskyrmion pairs).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 887-888)

Pages:

960-965

Citation:

Online since:

February 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.L. Chien, C.R. Westgate, Eds., The Hall Effect and Its Applications, Plenum, New York, (1980).

Google Scholar

[2] R.S. Popovic, Hall Effect Devices, Institute of Physics, Bristol, UK, ed. 2, (2004).

Google Scholar

[3] B. Huckestein, Rev. Mod. Phys. 67 (1995) 357.

Google Scholar

[4] H.L. Stormer, D.C. Tsui, A.C. Gossard, Rev. Mod. Phys. 71 (1999) s298.

Google Scholar

[5] W.L. Lee, S. Watauchi, V.L. Miller, R.J. Cava, N.P. Ong, Science 303 (2004) 1647.

Google Scholar

[6] J.N. Chazalviel, Phys. Rev. B 11 (1975) 3918.

Google Scholar

[7] S.L. Sondhi, A. Karlhede, S.A. Kivelson, E.H. Rezayi, Phys. Rev. B 47 (1993) 16419.

Google Scholar

[8] S.E. Barrett, G. Dabbagh, L.N. Pfeiffer, K.W. West, R. Tycko, Phys. Rev. Lett. 74 (1995) 5112.

Google Scholar

[9] A. Schmeller, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 75 (1995) 4290.

Google Scholar

[10] E. Ardonne, K. Schoutens, Phys. Rev. Lett. 82 (1999) 5096.

Google Scholar

[11] A. Stern, S.M. Girvin, A.H. MacDonald, N. Ma, Phys. Rev. Lett. 86 (2001) 1829.

Google Scholar

[12] Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622C634 (1947).

Google Scholar

[13] McClure, J. W. Diamagnetism of graphite. Phys. Rev. 104, 666C671 (1956).

Google Scholar

[14] Slonczewski, J. C. Weiss, P. R. Band structure of graphite. Phys. Rev. 109, 272C279 (1958).

Google Scholar

[15] Semenoff , G. W. Condensed-matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449C2452 (1984).

DOI: 10.1103/physrevlett.53.2449

Google Scholar

[16] Fradkin, E. Critical behavior of disordered degenerate semiconductors. Phys. Rev. B 33, 3263C3268 (1986).

Google Scholar

[17] Haldane, F. D. M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the parity anomaly,. Phys. Rev. Lett. 61, 2015C2018 (1988).

DOI: 10.1103/physrevlett.61.2015

Google Scholar

[18] R. Jackiw and S. -Y. Pi, Phys. Rev. Lett. 98, 266402 (2007).

Google Scholar

[19] Claudio Chamon et al., Phys. Rev. Lett. 100, 110405 (2008).

Google Scholar

[20] B. Seradjeh and M. Franz, arXiv: 0709. 4258vl.

Google Scholar

[21] C. -Y. Hou, C. Chamon, and C. Mudry, Phys. Rev. Lett. 98, 186809 (2007).

Google Scholar

[22] G.W. Semenoff, Phys. Rev. Lett. 35, 2449 (1984).

Google Scholar

[23] D.H. Lee and C.L. Kane, Phys. Rev. Lett. 64, 1313 (1990).

Google Scholar

[24] S.L. Sondhi,A. Karlhede S.A. Kivelson, and E.H. Rezayi, Phys. Rev. B. 47, 16419 (1993).

Google Scholar

[25] T.T. Wu and C.N. Yang, Phys. Rev. D. 14, 437 (1975).

Google Scholar

[26] M. Stone, Phys. Rev. B. 53, 16573 (1996).

Google Scholar

[27] . Goursat, A Course in Mathematical Analysis, vol. 1, Dover, New York. 1904 (translated by Earle Raymond Hedrick).

Google Scholar

[28] J.A. Schouten, Tensor Analysis for Physicists, Clarendon Press, Oxford (1951).

Google Scholar

[29] Y.S. Duan and S.L. Zhang, Int.J. Eng. Sci. 28, 689 (1990).

Google Scholar

[30] H. Hopf, Math. Ann. 96, 209 (1929).

Google Scholar