Symmetric Fusion Frames with Several Generators

Article Preview

Abstract:

Frame theory plays an important role in field of the engineering and technology because of their redundancy properties. In this paper, symmetric fusion frames with several generators are constructed from any fusion frames given, which generalizes the existing result to the case of several generators. This way makes the amount of wavelets largely increase.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 889-890)

Pages:

575-578

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Duffin, A. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., Vol. 72 (1952), pp.341-366.

DOI: 10.1090/s0002-9947-1952-0047179-6

Google Scholar

[2] I. Daubechies, A. Groddmann, Y. Mayer, Painless nonorthogonal expansions, J. Math. Phys., Vol. 27 (1986), pp.1271-1283.

Google Scholar

[3] P. Casazza, J. Kovacevic, J. Kelner, Equal-norm tight frames with erasures, Adv. Comput. Math., Vol. 18 (2003), pp.387-430.

Google Scholar

[4] V. Goyal, J. Kovacevic, J. Kelner, Quantized frames expansions with erasures. Appl. Comput. Harmon. Anal., Vol. 10 (2001), pp.203-233.

Google Scholar

[5] B. Hassibi, B. Hochwald, A. Shokrollahi, W. Sweldens, Representation theory for high-rate multiple-antenna code design, IEEE Trans. Inform. Theory, Vol. 47 (2001), pp.2335-2367.

DOI: 10.1109/18.945251

Google Scholar

[6] D. Gabor, Thoery of communications. J. Inst. Elec. Engrg., Vol. 93 (1946), pp.429-457.

Google Scholar

[7] A. Cordoba and C. Fefferman. Wave packets and Fourier integral operators. Comm. Partial Differrential Equations, Vol. 3 (1978), pp.979-1005.

DOI: 10.1080/03605307808820083

Google Scholar

[8] D. Labate, G. Weiss and E. Wilson. An approach to the study of wave packet systems. Contemp. Math., Wavelets, Frames and Operator Theory, Vol. 345 (2004), pp.215-235.

DOI: 10.1090/conm/345/06250

Google Scholar

[9] M. Lacey and C. Thiele, estimates on the bilinear Hilbert transform for . Ann. of Math., Vol. 146 (1997), pp.693-724.

Google Scholar

[10] M. Lacey and C. Thiele. On Caldern's conjecture. Ann. of Math., Vol. 149 (1999), pp.475-496.

Google Scholar

[11] O. Christensen and A. Rahimi. Frame properties of wave packet systems in . Adv. Comput. Math., Vol. 29 (2008), pp.101-111.

DOI: 10.1007/s10444-007-9038-3

Google Scholar

[12] E. Hernandez, D. Labate, G. Weiss and E. Wilson. Oversampling, quasi affine frames and wave packets. Appl. Comput. Harmon. Anal., Vol. 16 (2004), pp.111-147.

DOI: 10.1016/j.acha.2003.12.002

Google Scholar

[13] S. Goh, Z. Lim, Z. Shen, Symmetric and antisymmetric tight wavelet frames, Appl. Comput. Harmon. Anal., Vol. 20 (2006), pp.411-421.

DOI: 10.1016/j.acha.2005.09.006

Google Scholar

[14] G. Wu and H. Cao, Symmetric wave packet frames, Applied Mechanics and Materials Vol. 227-429 (2013), pp.1528-1531.

DOI: 10.4028/www.scientific.net/amm.427-429.1528

Google Scholar