Research on Impulsive Lurie Systems with Time-Delay

Article Preview

Abstract:

Based on stability theory of impulsive differential equation and new comparison theory of impulsive differential system, some simple yet less conservative criteria ensuring impulsive synchronization of the Lurie systems are derived. A numerical example is given to illustrate the effectiveness of the method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 889-890)

Pages:

633-636

Citation:

Online since:

February 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.G. Li, C.Y. Wen, Y.C. Soh: IEEE Trans. Automat. Contr. Vol. 46 (2001), p.894.

Google Scholar

[2] J.T. Sun, Y.P. Zhang, L. Wang, Q.D. Wu: Physics A Vol. 304 (2006), p.130.

Google Scholar

[3] J. Zhou, X.H. Cheng, L. Xiang, Y.C. Zhang: Chaos, Solitons& Fractals Vol. 33 (2007), p.607.

Google Scholar

[4] J.T. Sun, Y.P. Zhang, F. Qiao, Q.D. Wu: Chaos, Solitons &Fractals Vol. 19 (2004), p.1049.

Google Scholar

[5] B. Liu, G. R. Chen, K.L. Teo, X.Z. Liu: Chaos, Solitons & Fractals Vol. 23 (2005), p.1629.

Google Scholar

[6] B.J. Xu, X.Z. Liu, X.X., Liao: Computers and Mathematics with Applications Vol. 47 (2004), p.419.

Google Scholar

[7] H. M. Guo, S.M. Zhong: Applied Mathematics and Computation Vol. 191 (2007), p.5509.

Google Scholar

[8] J.D. Cao, H.X. Li, D.W.C. Ho: Chaos, Solitons & Fractals Vol. 23 (2005), p.1285.

Google Scholar

[9] J. Cao, C. Yang, G. Zhou, F. Tang and P. Li: Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications & Algorithms Vol. 14 (2007), p.190.

Google Scholar