p.551
p.557
p.563
p.569
p.575
p.581
p.588
p.594
p.600
High-Cycle Fatigue Properties of Carbon Steel and Work-Hardened Oxygen Free Copper in High Pressure Hydrogen
Abstract:
The high-cycle fatigue properties of 0.35% carbon steel and work-hardened oxygen-free copper in 10MPa hydrogen were studied. The fatigue limit of the carbon steel in hydrogen was almost the same as that in air. The fatigue strength at 107 cycles of the copper was higher in hydrogen than in air. The fatigue life of both materials is longer in hydrogen than in air. The reason was the delays in the crack initiation and the early propagation of the cracks in hydrogen. For both materials, the detrimental effect on the fatigue strength due to the hydrogen environment was small, however, it was determined that hydrogen participates in the slip deformation. The morphology of the slip bands was specific in hydrogen. In the copper, the slip bands, which are non-viable in air, developed in hydrogen.
Info:
Periodical:
Pages:
575-580
Citation:
Online since:
March 2014
Authors:
Keywords:
Price:
Сopyright:
© 2014 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: