Simulation Studying on Viscoelasticity and Orthotropic of Composite Materials

Article Preview

Abstract:

The viscoelasticity and orthotropic of composite materials has been investigated. Based on the essence of dynamic wave equation, a numerical modeling of guided waves propagating in anisotropic viscoelastic plates is developed by employing the spectral finite element method (SFEM). The phase velocity, energy velocity and attenuation curves can be obtained and analyzed by simulating carbon-epoxy film and carbon-epoxy film on the different substrates. The results illustrate that the mode coupling phenomenon will occur due to consider viscoelastic of composite materials which can use for choice of frequency. In the viscoelastic film/substrate system, the more modes and the lower attenuation amplitude appear which explains the better for monitoring long distance. Knowledge of these properties is important for evaluating material damage and designing material structure .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

275-282

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Ivan Bartoli, Alessandro Marzani, Francesco Lanza di Scalea, Erasmo Viola, Modeling wave propagation in damped waveguides of arbitrary cross-section, Journal of Sound and Vibration 295 (2006) 685-707.

DOI: 10.1016/j.jsv.2006.01.021

Google Scholar

[2] F. Simonetti, J. Acoust, Lamb wave propagation in elastic plates coated with viscoelastic materials, Soc. Am. 115 (5), (2004) 2041-(2053).

DOI: 10.1121/1.1695011

Google Scholar

[3] Jose` M. Galan, Ramon Abascal, Remote characterization of defects in plates with viscoelastic coatings using guided waves, Ultrasonics 42 (2004) 877-882.

DOI: 10.1016/j.ultras.2004.01.072

Google Scholar

[4] M. Castaings, B. Hosten, and T. Kundu, Inversion of ultrasonic plane wave transmission data in composite plates to infer viscoelastic material properties, NDT & E International 33(6), (2000)377-392.

DOI: 10.1016/s0963-8695(00)00004-9

Google Scholar

[5] M. Castaings, C. Bacon, B. Hosten, and M. V. Predoi, Finite element predictions for the dynamic response of thermo-viscoelastic material structures, J. Acoust. Soc. Am. 115 (3), (2004)1125-1133.

DOI: 10.1121/1.1639332

Google Scholar

[6] Nayfeh. A. H. Chimenti. D. E., Free wave propagation in plates of general anisotropic media, Journal of Applied Mechanics, 56 (1989)881-886.

DOI: 10.1115/1.3176186

Google Scholar

[7] H. Gao, J. L. Rose, Goodness dispersion curves for ultrasonic guided wave based SHM: a sample problem in corrosion monitoring, the Aeronautical Jounal, 114( 2008) 49-56.

DOI: 10.1017/s0001924000003523

Google Scholar

[8] M. Castaings, C. Bacon, B. Hosten, M. V. Predol, Finite element predictions for the dynamic response of thermo-viscoelastic material structures, J. Acoust. Soc. Am. 115(3), (2004) 1125-1133.

DOI: 10.1121/1.1639332

Google Scholar

[9] A. Bernard, M. J. S. Lowe, M. Deschamps Guided waves energy velocity in absorbing and non-absorbing plates, , J. Acoust. Soc. Am. 110 (1), (2001) 186-196.

DOI: 10.1121/1.1375845

Google Scholar

[10] Ivan Bartoli, Alessandro Marzani, Francesco Lanza di Scalea, Erasmo Viola, Modeling wave propagation in damped waveguides of arbitrary cross-section, Journal of Sound and Vibration 295 (2006) 685-707.

DOI: 10.1016/j.jsv.2006.01.021

Google Scholar

[11] Matrix techniques for modeling ultrasonic waves in mutilayered media, Michael J. S. Lowe, trans. Ultrason. Ferroelectr. Freq. Control 42(1995) 525-542.

DOI: 10.1109/58.393096

Google Scholar

[12] Barshinger. J. N. and Rose. J. L., Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 (2004) 1547-1556.

DOI: 10.1109/tuffc.2004.1367496

Google Scholar

[13] Shorter.P. J, Wave propagation and damping in linear viscoelastic laminates, J. Acoust. Soc. Am. 115(2004)1917-(1925).

Google Scholar

[14] Ying Luo, Hong Li, Baiqiang Xu, Guidong Xu, SFEM modeling of ultrasonic guided waves propagation in layered viscoelastic film/substrate materials , Jounal of Applied Physics, 108 (2010), 123505(1-6).

DOI: 10.1063/1.3520572

Google Scholar

[15] B.A. Auld, Acoustic Fields and Waves in Solids (two volumes), A Wiley-Interscience publication, 1973.

Google Scholar