Effect of Reduction Process Parameter in Direct Reduction Process of Laterite to Produce Substitute Pig Iron for Thin Wall Ductile Iron Material

Article Preview

Abstract:

Many parameters are involved in reduction process but carbon availability, process temperature and process time hold the role. This research conducted to find the relation effects of three main factors mention previously. This research used lateritic rocks from Sebuku Island as the iron source and coal as carbon source. Particle size with the highest Fe content is used for reduction process. Variations in reduction process made in mass ratio, process temperature, and process time. The mass ratios are 1:4 and 1:5. The process temperatures are 900OC and 1000OC. Process times are 10, 20, and 30 minutes. Characterization process used XRD and XRF. The results show that carbon availability is important and combinations of higher carbon supplies and process temperature are able to prevent further oxidation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-99

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.K. Paramaguru, R.K. Gagali, H.S. Ray, Influence of Slag and Foam Characteristic on Reduction of FeO Containing Slags by Solid Carbon, Met. Mater Trans B. 28B(1997) 805-810.

DOI: 10.1007/s11663-997-0007-5

Google Scholar

[2] I. Sohn, R.J. Fruehan, The Reduction of Iron Oxide by Volatiles in a Rotary Hearth Furnace Process Part I – The Role and Kinetics of Volatile Reduction, Met Mater Trans B. 36(2005) 605-612.

DOI: 10.1007/s11663-005-0051-y

Google Scholar

[3] J. W. Soedarsono, A. Kawigraha, R.D. Sulamet-Ariobimo, D. Johansyah, G.D. Kusuma, Suprayogi, A. Yosi, N.L. Saputro, A.T. Sidiq, Erwin, and D. Natanael, Potential Indonesia Ores as Raw Material for Producing Iron Nugget, AMR. 652-654(2012).

DOI: 10.4028/www.scientific.net/amr.652-654.2529

Google Scholar

[4] J. W. Soedarsono, V. Astini, F. Fazri, A. Kawigraha, R.D. Sulamet-Ariobimo, A. Rustandi, and S. Tjahyono: submitted to ICMEMM (2013).

DOI: 10.4028/www.scientific.net/amr.887-888.281

Google Scholar

[5] A. Kawigraha, S. Harjanto, J.W. Soedarsono, and Pramusanto, Reduction Behaviour of Coal Composite Pellet made from Indonesia Low Grade Iron Ore, unpublished.

DOI: 10.4028/www.scientific.net/amm.281.490

Google Scholar

[6] A. Kawigraha, J.W. Soedarsono, S. Harjanto, Pramusanto, Reduction of Composite Pellet Containing Indonesia Lateritic Iron Ore as Raw Material for Producing TWDI, AMM. 281 (2013) 490-495.

DOI: 10.4028/www.scientific.net/amm.281.490

Google Scholar

[7] K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, S.B. Lalvani, Reduction of Iron Oxide in Carbon Monoxide Atmosphere – Reaction Controlled Kinetics, Fuel Process Technol. 86(2004) 33-47.

DOI: 10.1016/j.fuproc.2003.12.009

Google Scholar

[8] T. Usui, N. Inoue, T. Watanabe, T. Yokoyama, T. Oyama, M. Morita, Pre Reduction of Iron Oxide with Coal Carbonization Gas, Ironmak Steelmak. 31(2004) 479–484.

DOI: 10.1179/030192304225019289

Google Scholar

[9] N. Ishikawa, K. Furuya, N. Mitsuoka, T. Inami, Reduction Wustite by Solid Carbon, ISIJ Int. 46(2006) 1106–1107.

DOI: 10.2355/isijinternational.46.1106

Google Scholar

[10] R. Haque, H.S. Ray, Role of Ore/Carbon Contact and Direct Reduction in the Reduction of Iron Oxide by Carbon, Met Mater Trans B. 26B(1995) 400-401.

DOI: 10.1007/bf02660982

Google Scholar

[11] S.K. Dey, B. Jana, A. Basumallick, Kinetics and Reduction Characteristics of Hematite-Non Cooking Coal Mixed Pellets under Nitrogen Gas Atmosphere, ISIJ Int. 33(1993) 735-739.

DOI: 10.2355/isijinternational.33.735

Google Scholar

[12] Q. Wang, Z. Yang, J. Tian, W. Li, J Sun, Mechanism of Reduction in Iron Ore – Coal Composite Pellets, Ironmak Steelmak. 24(1997) 457-60.

Google Scholar

[13] T. Yamashita, T. Nakada, K. Nagata, In-situ Observation of Fe0. 94O Reduction at High Temperature with the Use of Optical Microscopy, Met Mater Trans B. 38B(2007) 185-191.

DOI: 10.1007/s11663-007-9039-0

Google Scholar

[14] A.E.A. Nogueira, M.B. Mourao, C. Takano, D. M. Santos, Effect of Slag Composition on Iron Nuggets Formation from Carbon Composite Pellets, Mater Res. 13-2(2010) 191-195.

DOI: 10.1590/s1516-14392010000200012

Google Scholar

[15] B. Anameric, K.B. Rundman, S.K. Kawatra, Carburization Effects on Pig Iron Nugget Making, Miner Metal Proc. 23-3(2006) 139-150.

DOI: 10.1007/bf03403201

Google Scholar

[16] J. Moon, V. Sahajwalla, Investigation into the Role of the Bouduard Reaction in Self Reducing Iron Oxide and Carbon Briquettes, Met Mater Trans B. 37B(2006) 215-221.

DOI: 10.1007/bf02693151

Google Scholar

[17] E. Donskoi, D.L.S. Mc Elwain, L.J. Wibbrley, Estimation and Modelling of Parameter for Direct Reduction in Iron Ore/Coal Composites Part II - Kinetic Parameter, Met Mater Trans B. 34B(2003) 255-266.

DOI: 10.1007/s11663-003-0012-2

Google Scholar

[18] I. Kobayashi, Y. Tanigaki, A. Uragami, A New Process to Produce Iron Directly from Fine Ore and Coal, Iron and Steelmaker. 28-9(2001) 19-22.

Google Scholar