Thermal Degradation of Flax Fibres as Potential Reinforcement in Thermoplastic Composites

Article Preview

Abstract:

This work reports on a study of thermal degradation of flax fibres to gain an improved understanding of the use and limitations of flax fibres as reinforcement for thermoplastic composites manufactured by the vacuum forming process. The effect of heating on chemical decomposition and thermal stability was performed, using fourier transform infrared spectrometry (FTIR) and thermogravimetry (TG) techniques. In addition, the characterisation of micro structures of failure surface following tensile testing of the composites was conducted. The results show that the hemicelluloses decomposition of flax fibres during thermal degradation is a factor to have the detrimental effect on the thermal stability of fibres, particularly with low heating rate. The present investigation, A decrease of hemicellulose and pectin content of the fibres, a decrease of consolidation temperature and an increase of heating rate during the manufacturing of flax fibre thermoplastic composites should improve their mechanical performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-36

Citation:

Online since:

February 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Alves, C., et al., Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production, 2010. 18(4): pp.313-327.

DOI: 10.1016/j.jclepro.2009.10.022

Google Scholar

[2] Mohanty, A.K., et al., Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Composites Part A: Applied Science and Manufacturing, 2004. 35(3): pp.363-370.

DOI: 10.1016/j.compositesa.2003.09.015

Google Scholar

[3] Koronis, G., A. Silva, and M. Fontul, Green composites: a review of adequate materials for automotive applications. Composites Part B: Engineering, 2012(0).

DOI: 10.1016/j.compositesb.2012.07.004

Google Scholar

[4] John, M.J. and S. Thomas, Biofibres and biocomposites. Carbohydrate Polymers, 2008. 71(3): pp.343-364.

DOI: 10.1016/j.carbpol.2007.05.040

Google Scholar

[5] Wambua, P., J. Ivens, and I. Verpoest, Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 2003. 63(9): pp.1259-1264.

DOI: 10.1016/s0266-3538(03)00096-4

Google Scholar

[6] Drzal, L.T., et al., Low-cost, bio-based composite materials for housing applications, in Advances in Building Technology. 2002, Elsevier: Oxford. pp.225-232.

DOI: 10.1016/b978-008044100-9/50028-0

Google Scholar

[7] Faruk, O., et al., Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 2012(0).

Google Scholar

[8] Bledzki, A.K. and J. Gassan, Composites reinforced with cellulose based fibres. Progress in Polymer Science, 1999. 24(2): pp.221-274.

DOI: 10.1016/s0079-6700(98)00018-5

Google Scholar

[9] Bledzki, A.K., O. Faruk, and V.E. Sperber, Cars from Bio-Fibres. Macromolecular Materials and Engineering, 2006. 291(5): pp.449-457.

DOI: 10.1002/mame.200600113

Google Scholar

[10] De Rosa, I.M., et al., Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology, 2010. 70(1): pp.116-122.

DOI: 10.1016/j.compscitech.2009.09.013

Google Scholar

[11] Pielichowski, K.N., James Rapra Technology Limited Staff, Thermal Degradation of Polymeric Materials. 2005, Shrewsbury: Smithers Rapra. 320.

Google Scholar

[12] Gassan, J. and A.K. Bledzki, Thermal degradation of flax and jute fibers. Journal of Applied Polymer Science, 2001. 82(6): pp.1417-1422.

DOI: 10.1002/app.1979

Google Scholar

[13] Yang, H., et al., Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 2007. 86(12-13): pp.1781-1788.

DOI: 10.1016/j.fuel.2006.12.013

Google Scholar

[14] J.H. v. d. Maas, Basic infrared spectroscopy LinkLondon : Heyden, (1972).

Google Scholar

[15] Albano, C., et al., Thermal stability of blends of polyolefins and sisal fiber. Polymer Degradation and Stability, 1999. 66(2): pp.179-190.

DOI: 10.1016/s0141-3910(99)00064-6

Google Scholar

[16] Fung, K.L., et al., An investigation on the processing of sisal fibre reinforced polypropylene composites. Composites Science and Technology, 2003. 63(9): pp.1255-1258.

DOI: 10.1016/s0266-3538(03)00095-2

Google Scholar

[17] Wong, S., R. Shanks, and A. Hodzic, Interfacial improvements in poly(3-hydroxybutyrate)-flax fibre composites with hydrogen bonding additives. Composites Science and Technology, 2004. 64(9): pp.1321-1330.

DOI: 10.1016/j.compscitech.2003.10.012

Google Scholar

[18] Yao, F., et al., Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability, 2008. 93(1): pp.90-98.

DOI: 10.1016/j.polymdegradstab.2007.10.012

Google Scholar