Surface Morphology Study on Fibres Treated in Cold Plasma Discharge

Article Preview

Abstract:

The paper presents results related to surface treatment of polypropylene fibres with intention to increase its performance in cement composite by exposing such fibres in cold plasma discharge. In was previously demonstrated that such treatment has beneficial effect. Here we focused mainly on the changes in the surface. The study was carried out by electron microscopy, confocal microscopy and microscopy of atomic forces. The results suggest increasing degree of change in the surface as the energy of discharge and time of exposure increase. Atomic force microscopy indicates increase in adhesion force.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

220-223

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Zhang, D. Feldman, Synthetic fibre-reinforced concrete, Journal Progress in polymer science, volume 20, Issue 2, 1995, pp.185-210, ISSN: 00796700.

Google Scholar

[2] R. Brown, A. Shukla, K. R. Natarajan, Fibre reinforcement of concrete structures, University of Rhode Island transportation centre, September (2002).

Google Scholar

[3] LI Bei-Xing, The mechanical properties of polypropylene fibre reinforced concrete, Journal of Wuhan University of Technology – Mater, Sci. Ed., No. 19-3, 2004, pp.68-71, ISSN: 10002413.

DOI: 10.1007/bf02835065

Google Scholar

[4] K. Pistol, F. Weise, B. Meng, Polypropylene fibres in high performance concretes: Mechanisms of action in the event of fire, Beton – und Stahlbetonbau, Volume 107, Issue 7, 2012, pp.476-483, ISSN: 00059900.

DOI: 10.1002/best.201200024

Google Scholar

[5] M. Simor, J. Rahel, P. Vojtek, et al., Atmospheric-pressure diffuse coplanar surface discharge for surface treatments, APPLIED PHYSICS LETTERS 81 (15), OCT 7 2002, pp.2716-2718, ISSN: 00036951.

DOI: 10.1063/1.1513185

Google Scholar

[6] M. Černák, L. Černáková, I. Hudec, D. Kováčik, A. Zahoranová, Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials, The European Physical Journal Applied Physics 47, 2009, pp.1-6.

DOI: 10.1051/epjap/2009131

Google Scholar

[7] M. Černák, Method and apparatus for treatment of textile materials. US Patent Appl. No. 2004/0194223, 07 October (2004).

Google Scholar

[8] M. Černák, An apparatus and method for improving felting properties of animal fibres by plasma treatment. CZ Patent Appl. No. 2009/000123.

Google Scholar

[9] D. Kopkáně, L. Bodnárová, R. Hela, V. Petránek, P. Sťahel, M. Černák, Diffuse coplanar surface barrier discharge for enhance cohesion of polypropylene fibres, in 2nd wta- international phd symposium, WTA Publications, 2011. pp.336-343.

Google Scholar

[10] D. Skácelová, M. Fialová, P. Sťahel, M. Černák, Improvement of surface properties of reinforcing polypropylene fibres by atmospheric pressure plasma treatment. Chemické listy, Praha: Česká společnost chemická, 2012, roč. 106, pp.1439-1442.

Google Scholar

[11] M. Fialová, D. Skácelová, P. Sťahel, M. Černák, Improvement of wetting properties of polypropylene fibres by atmospheric pressure plasma treatment. In Book of Extended abstracts, PASNPG 2011. Blansko, 2011. pp.25-26.

Google Scholar

[12] M. Fialová, D. Skácelová, P. Sťahel, M. Černák, Reinforcing polypropylene fibres modified by atmospheric pressure plasma. In NANOCON 2011, 2011, ISBN: 978-80-87294-23-9.

Google Scholar

[13] D. Kopkáně, L. Bodnárová, Polypropylene fibres treated in cold plasma discharge and its testing by restrained shrinkage ring test, 9. Konference speciální betony, ISBN: 978-80-86604-58-9, (2012).

DOI: 10.4028/www.scientific.net/amm.464.25

Google Scholar

[14] N. -Y. Cui, N.M. D Brown, Modification of the surface properties of a polypropylene (PP) film using an air dielectric berrier discharge plasma, Applied Surface Science, Volume 189, Issue 1-2, p.31–38, 2002, ISSN: 01694332.

DOI: 10.1016/s0169-4332(01)01035-2

Google Scholar

[15] Q.F. Wei, R.R. Mather, X.Q. Wang, A.F. Fotheringham, Functional nanostructures generated by plasma-enhanced modification of polypropylene fibre surfaces, Journal of Materials Science, Volume 40, Issue 20, p.5387–5392, 2005, ISSN: 00222461.

DOI: 10.1007/s10853-005-4336-y

Google Scholar

[16] T. Morávek, Plazmová úprava povrchu výztužných polypropylénových vláken v dielektrickém bariérovém výboji. Diploma thesis. Masaryk University, Brno, (2013).

Google Scholar

[17] A.B. D. Cassie, S. Baxter; Wettability of porous surfaces, Transactions of the Faraday Society, Volume 40, pp.546-551, 1944, ISSN: 00147672.

DOI: 10.1039/tf9444000546

Google Scholar