Hydrothermal Synthesis and Photocatalytic Properties of TiO2/SnS2 Nanocomposite

Article Preview

Abstract:

TiO2/SnS2 nanocomposite was synthesized via hydrothermal treatment of tin (IV) chloride pentahydrate, thioacetamide and TiO2 nanotubes in deionized water at 150 °C for 3 h. The structure, composition and optical property of the as-synthesized nanocomposite were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and UV-vis diffuse reflectance spectra, and its photocatalytic property was tested in the reduction of aqueous Cr6+ under visible-light (λ > 420 nm) irradiation. It was observed that TiO2 nanotubes exhibited no photocatalytic activity, whereas TiO2/SnS2 nanocomposite exhibited photocatalytic activity in the reduction of aqueous Cr6+ under visible-light (λ > 420 nm) irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-26

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.C. Zhang, M. Yang, G. Zhang and D.D. Dionysiou: Appl. Catal. B Vol. 142–143 (2013), p.249.

Google Scholar

[2] L. Wang, X. Li, W. Teng and Q. Zhao: J. Hazard. Mater. Vol. 244–245 (2013), p.681.

Google Scholar

[3] Y.C. Zhang, L. Yao, G. Zhang, D.D. Dionysiou, J. Li and X. Du: Appl. Catal. B Vol. 144 (2014), p.730.

Google Scholar

[4] Z. He, Q. Cai, M. Wu and Y. Shi: Ind. Eng. Chem. Res. Vol. 52 (2013), p.9556.

Google Scholar

[5] G. Dong and L. Zhang: J. Phys. Chem. C Vol. 117 (2013), p.4062.

Google Scholar

[6] A. Tanaka, K. Nakanishi and R. Hamada: ACS Catal. Vol. 3 (2013), p.1886.

Google Scholar

[7] L. Gomathi Devi and R. Kavitha: Appl. Catal. B Vol. 140–141 (2013), p.559.

Google Scholar

[8] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton and D.D. Dionysiou: Appl. Catal. B Vol. 125 (2012), p.331.

DOI: 10.1016/j.apcatb.2012.05.036

Google Scholar

[9] H. Park, Y. Park, W. Kim and W. Choi: J. Photochem. Photobiol. C Vol. 15 (2013), p.1.

Google Scholar

[10] R. Daghrir, P. Drogui and D. Robert: Ind. Eng. Chem. Res. Vol. 52 (2013), p.3581.

Google Scholar

[11] L. Liu, J. Lv, G. Xu and Y. Wang: J. Solid State Chem. Vol. 208 (2013), p.27.

Google Scholar

[12] Y.C. Zhang, J. Li, H.Y. Xu: Appl. Catal. B Vol. 123–124 (2012), p.18.

Google Scholar

[13] F. Yang, G. Han, D. Fu, Y. Chang and H. Wang: Mater. Chem. Phys. Vol. 140 (2013), p.398.

Google Scholar

[14] D. Sarkar, C.K. Ghosh, S. Mukherjee and K.K. Chattopadhyay: ACS Appl. Mater. Interfaces Vol. 5 (2013), p.331.

Google Scholar

[15] J. Li, T. Wang and X. Du: Sep. Purif. Technol. Vol. 101 (2012), p.11.

Google Scholar

[16] Y. Liao, H. Zhang, Z. Zhong and L. Jia: ACS Appl. Mater. Interfaces Vol. 5 (2013), p.11022.

Google Scholar