Effect of Temperature on Fe3O4 Magnetic Nanoparticles Prepared by Coprecipitation Method

Article Preview

Abstract:

The Fe3O4 magnetic nanoparticles obtained by the aqueous coprecipitation method are characterized systematically using scanning electron microscope, X-ray diffraction and vibrating sample magnetometer. These magnetic nanoparticles are spheric, dispersive, and have average grain size of 50 nm. The size and magnetic properties of Fe3O4 nanoparticles can be tuned by the reaction temperature. All samples exhibit high saturation magnetization (Ms=53.4 emu·g-1) and superparamagnetic behavior with a block temperature (TB) of 215K. These properties make such Fe3O4 magnetic nanoparticles worthy candidates for the magnetic carriers of targeted-drug or gene therapy in future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-176

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Yan, J. Zhang, C. You, Z. Song, B. Yu, Y. Shen. Influences of different synthesis conditions on properties of Fe3O4 nanoparticles[J]. Materials Chemistry and Physics. 2009, 113(1): 46-52.

DOI: 10.1016/j.matchemphys.2008.06.036

Google Scholar

[2] X.C. Peng, J. Chen, T. Cheng, S. Zhao, J.J. Ji, H.Y. Hu, X.L. Zhang. PLGA modified Fe3O4 nanoclusters for SiRNA delivery[J]. Materials Letters. 2012, 81(0): 102-104.

DOI: 10.1016/j.matlet.2012.04.127

Google Scholar

[3] S.Y. Kim, B. Ramaraj, K. R. Yoon. Preparation and characterization of polyvinyl alcohol-grafted Fe3O4 magnetic nanoparticles through glutaraldehyde[J]. Surface and Interface Analysis. 2012, 44(9): 1238-1242.

DOI: 10.1002/sia.4929

Google Scholar

[4] O. M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina. Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties[J]. Superlattices and Microstructures. 2012, 52: 793-799.

DOI: 10.1016/j.spmi.2012.07.009

Google Scholar

[5] Z. Mo, C. Zhang, R. Guo, S. Meng, J. Zhang. Synthesis of Fe3O4 Nanoparticles Using Controlled Ammonia Vapor Diffusion under Ultrasonic Irradiation[J]. Industrial \& Engineering Chemistry Research. 2011, 50(6): 3534-3539.

DOI: 10.1021/ie101683x

Google Scholar

[6] R.Y. Hong, J.H. Li, J. Wang, H.Z. Li. Comparison of schemes for preparing magnetic Fe3O4 nanoparticles[J]. China Particuology. 2007, 5: 186-191.

DOI: 10.1016/j.cpart.2007.01.011

Google Scholar

[7] Z. G. Zheng, X. C. Zhong, Y. H. Zhang, H. Y. Yu, D. C. Zeng. Synthesis, structure and magnetic properties of nanocrystalline ZnxMn1−xFe2O4 prepared by ball milling[J]. Journal of Alloys and Compounds. 2008, 466(1-2): 377-382.

DOI: 10.1016/j.jallcom.2007.11.112

Google Scholar

[8] Z. Mo, C. Zhang, R. Guo, S. Meng, J. Zhang. Synthesis of Fe3O4 nanoparticles using controlled ammonia vapor diffusion under ultrasonic irradiation[J]. Industrial \& Engineering Chemistry Research. 2011, 50(6): 3534-3539.

DOI: 10.1021/ie101683x

Google Scholar

[9] S. Ahmadi, C.H. Chia, S. Zakaria, K. Saeedfar, N. Asim. Synthesis of Fe3O4 nanocrystals using hydrothermal approach[J]. Journal of Magnetism and Magnetic Materials. 2012, 324: 4147-4150.

DOI: 10.1016/j.jmmm.2012.07.023

Google Scholar