Effect of Rotating Magnetic Field on Fluid Convection and Microstructure during Directional Solidification of Sn-Zn Alloy

Article Preview

Abstract:

The solidification behaviors of Sn-Zn alloy under rotating magnetic field (RMF) with different magnetic intensities and different rotating frequencies were investigated, and the velocity of the convection induced by RMF was calculated. It is found that the trunk length of the precipitated phase reduces with the increase of magnetic intensity and rotating frequency, and the precipitated-phase distribution is more uniform. The tangential rate increases with increasing the magnetic intensity and rotating frequency, and reaches the maximum value at about 0.55r0. All the results indicate that the solidification microstructure is attributed to the effect of RMF on the nucleation, temperature fluctuation and fluid convection in the solidification process. It predicts that RMF presents obvious advantages on controlling solidification microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-48

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. A. Nikrityuk, K. Eckert, R. Grundmann: Int. J. Heat. Mass. Transfer. Vol. 49 (2006), p.1501.

Google Scholar

[2] J. E. Spinelli, M. D. Peres and A. Garcia : J. Alloys Comp. Vol. 403(2005), p.228.

Google Scholar

[3] R. S. Rerko, H. C. Groh, and C. Beckermann: Mater. Sci. Eng. A Vol. 347(2003), p.186.

Google Scholar

[4] Z. Fan, G. Liu, M. Hitchcock: Mater. Sci. Eng. A Vol. 413–414 (2005), p.229.

Google Scholar

[5] K. Zaïdat, N. Mangelinck-Noël and R. Moreau: C. R. Mecanique, (2007), p.330.

Google Scholar

[6] G. Zimmermann, A. Weiss and Z. Mbaya: Mater. Sci. Eng. A. Vol. 413-414(2005), p.236.

Google Scholar

[7] P. Mikolajczak and L. Ratke: Int. J. Cast Met. Res. Vol. 26 (2013), p.339.

Google Scholar

[8] P. A. Nikrityuk, M. Ungarish, K. Eckert and R. Grundmann: Phys. Fluids Vol. 17(2005), p.06710.

Google Scholar

[9] K. Galina, G. Amber and R. Lorenz: Metall. Trans. A Vol. 42A (2011), p.1657.

Google Scholar

[10] L. S. Wang, J. Shen, Z. R. Feng and H. Z. Fu: Appl. Phys. A Vol. 113 (2013), p.177.

Google Scholar

[11] J. Li, T. Wang, J. Xu, Z. Yan, J. Sun, J. Xu, Z. Cao and T. Li: Mater. Sci. Technol. Vol. 27 (2011 ), p.676.

Google Scholar

[12] C. J. Zhang, V. Shatrov, J. Priede, S. Eckert and G. Gerbeth: Metall. Trans. B Vol. 42 (2011), p.1188.

Google Scholar

[13] B. Fragoso and H. Santos: Int. J. Cast Met. Res. Vol. 26 (2013), p.193.

Google Scholar

[14] A. L. Genau, A. C. Freedman and L. Ratke:  J. Cryst. Growth Vol. 363 (2013), p.49.

Google Scholar

[15] Z. M. Yan, W. Z. Jin and T. J. Li: J. Mater. Sci. Eng. Perform. Vol. 21 (2012), p. (1970).

Google Scholar

[16] A. Noeppel,A. Ciobanas X.D. Wang,K. Zaidat, et at: Metall. Trans. B Vol. 41  (2010), p.193.

Google Scholar

[17] T. Campanella, C. Charbon, and M. Rappaz: Metall. Trans. A Vol. 35 (2004), p.3201.

Google Scholar

[18] S. Eckert, B. Willers, P.A. Nikrityuk, K. Eckert, U. Michel and G. Zouhar: Mater. Sci. Eng. A Vol. 413–414 (2005), p.211.

DOI: 10.1016/j.msea.2005.09.014

Google Scholar

[19] M. Medina, Y. Du Terrail, F. Durand and Y. Fautrelle: Metall. Trans. B Vol. 35 (2004), p.743.

Google Scholar

[20] Z. Chen, C.L. Chen, X.L. Wen and J. Wen: Acta Phys. Sin. Vol. 57(2008), p.6277.

Google Scholar

[21] Z. C. Han: Electromagnetic Metallurgy, Metallurgical Industry Press, Bei Jing(2001).

Google Scholar

[22] N. Apaydin: J. Mater. Sci. Lett. Vol. 1(1982), p.39.

Google Scholar

[23] C. Vives: Metall. Trans. B Vol. 20B (1989), p.631.

Google Scholar

[24] W. Kurz and D. J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Switzerland – Germany – UK - USA (1984).

Google Scholar

[25] Z. Chen, C.L. Chen, X.L. Wen, J. H. Zhu and W. S. Gao: Chin. Sci. Bull. Vol. 53 (2008), p.2575.

Google Scholar