[1]
Yu Sun, Stefan Duthaler and Bradley J. Nelson. Autofocusing Algorithm Selection in Computer Microscopy[C], 2005 IEEE International Conference on Intelligent Robots and Systems, (2005), 70 – 76.
DOI: 10.1109/iros.2005.1545017
Google Scholar
[2]
M. Rahman, N. Kehtarnavaz, S. Yousefi. An Auto-Focus Sharpness Function for Stereo Image Pairs[C], 2011 18th IEEE International Conference on Image Processing, (2011), 633-636.
DOI: 10.1109/icip.2011.6116631
Google Scholar
[3]
Jose Maria Mateos-Perez, Rafael Redondo, Rodrigo Nava, et al. Comparative Evaluation of Autofocus Algorithms for a Real-Time System for Automatic Detection of Mycobacterium tuberculosis[J], Journal of the International Society for Advancement of Cytometry, (2012).
DOI: 10.1002/cyto.a.22020
Google Scholar
[4]
O.A. OSIBOTE, R. DENDERE, S. KRISHNAN, et al. Automated Focusing in Bright-field Microscopy for Tuberculosis Detection[J], Journal of Microscopy, (2010), 155–163.
DOI: 10.1111/j.1365-2818.2010.03389.x
Google Scholar
[5]
Diansheng Cao, Yunguo Gao, Huanli Li, et al. Auto-focusing Evaluation Functions in Digital Image System[C], 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), (2010), V5-331 - V5-334.
DOI: 10.1109/icacte.2010.5579520
Google Scholar
[6]
Rony Ferzli, Lina J. Karam. A No-Reference Objective Image Sharpness Metric Based on the Notion of Just Noticeable Blur (JNB)[J], IEEE Transactions On Image Processing, (2009), 18(4): 717-728.
DOI: 10.1109/tip.2008.2011760
Google Scholar
[7]
Dashan Gao, Dirk Padfield, Jens Rittscher, et al. Automated Training Data Generation for Microscopy Focus Classification[J], Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010Lecture Notes in Computer Science, (2010).
DOI: 10.1007/978-3-642-15745-5_55
Google Scholar
[8]
Weigang Zhang, Chunxi Liu, Qingming Huang, et al. Coarse-to-Fine Dissolve Detection Based on Image Quality Assessment[J], The Era of Interactive Media, (2013), 277-287.
DOI: 10.1007/978-1-4614-3501-3_23
Google Scholar
[9]
R. Ferzli, Lina J. Karam. No-Reference Objective Wavelet Based Noise Immune Image Sharpness Metric[C], 2005 IEEE International Conference on Image Processing, 2005, 1, 405-408.
DOI: 10.1109/icip.2005.1529773
Google Scholar
[10]
X.Y. LIU, W.H. WANG, Y. SUN. Dynamic evaluation of autofocusing for automated microscopic analysis of blood smear and pap smear[J], Journal of Microscopy, (2007), 227(1): 15–23.
DOI: 10.1111/j.1365-2818.2007.01779.x
Google Scholar
[11]
Almir Kimura Junior, Marly G. F. Costa, Cicero F. F. Costa Filho, et al. Evaluation of autofocus functions of conventional sputum smear microscopy for tuberculosis[C], IEEE International Conference on Engineering in Medicine and Biology Society (EMBS), (2010).
DOI: 10.1109/iembs.2010.5626143
Google Scholar
[12]
Rony Ferzli and Lina J. Karam. Human Visual System Based No-Reference Objective Image Sharpness Metric[C], 2006 IEEE International Conference on Image Processing, (2006), 2949 – 2952.
DOI: 10.1109/icip.2006.312925
Google Scholar
[13]
Timo Ahonen, Matti Pietikainen. Face Description with Local Binary Patterns: Application to Face Recognition[J], IEEE Transactions On Pattern Analysis And Machine Intelligence, (2006), 28(12): 2037-(2041).
DOI: 10.1109/tpami.2006.244
Google Scholar
[14]
Timo Ojala, Matti Pietikainen, David Harwood. A Comparative Study of Texture Measures with Classification Based on Features Distributions[J], Pattern Recognition, (1996), 29 (1): 51–59.
DOI: 10.1016/0031-3203(95)00067-4
Google Scholar
[15]
Javier Ruiz-del-Solar, Julio Quinteros. Illumination compensation and normalization in eigenspace-based face recognition: A Comparative Study of Different Pre-processing Approaches[J], Pattern Recognition Letters, (2008), 29(14): 1966-(1979).
DOI: 10.1016/j.patrec.2008.06.015
Google Scholar