Prolonged Anti-Inflammatory Activity of Topical Melatonin by Niosomal Encapsulation

Article Preview

Abstract:

Melatonin, encapsulated and non-encapsulated, in a topical gel, was comparatively investigated for its in vitro permeation and in vivo anti-inflammatory properties. An average size of the melatonin-encapsulated niosomes of 197 nm with a zeta potential of-78.8 mV and an entrapment efficiency of 92.7% was incorporated into a gel base. In vitro skin permeation of the same gel base incorporated with non-encapsulated melatonin or melatonin niosomes at 5% was comparatively evaluated through porcine skin using Franz diffusion cells and analyzed by spectroflurometry at λex 278 and λem 348 nm. From the same gel base, the permeation rate of non-encapsulated melatonin was about 2.5 times greater than that of melatonin-encapsulated niosomes. In comparison to piroxicam gel and hydrocortisone cream used as the positive controls, topical applications of melatonin and melatonin niosome gels tested in croton oil-induced ear edema in mice suggested that its anti-inflammatory activities were prolonged by the niosomal encapsulation. Similarly, analgesic effect of melatonin was prolonged by niosomal encapsulation using tail flick test in mice. Therefore, its immediate permeation through the skin was retarded by niosomal encapsulation which could also prolong its rapid decline in exerting anti-inflammatory and analgesic activities in vivo.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-75

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.F. Uchegbu, A.T. Florence, Non-ionic surfactant vesicles (Niosomes): physical and pharmaceutical chemistry, Adv. Colloid. Interfac. Vol. 58 (1995), pp.1-55. 59.

DOI: 10.1016/0001-8686(95)00242-i

Google Scholar

[2] J.D. Yadav, P.R. Kulkarni, K.A. Vaidya and G.T. Shelke, Niosome: A Review, J. Pharm. Res. Vol. 4(3) (2011), pp.632-636. 59.

Google Scholar

[3] N.B. Mahale, P.D. Thakkar, R.G. Mali, D.R. Walunj and S.R. Chaudhari, Niosomes: Novel sustained release nonionic stable vesicular systems - An overview, Adv. Colloid. Interfac. Vol. 183-184 (2012), pp.46-54. 59.

DOI: 10.1016/j.cis.2012.08.002

Google Scholar

[4] A. Manosroi, P. Khanrin, W. Lohcharoenkal, R. G. Werner, F. Gotz, W. Manosroi and J. Manosroi,  Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes, Int. J. Pharm. Vol. 392 (2010), pp.304-310. 59.

DOI: 10.1016/j.ijpharm.2010.03.064

Google Scholar

[5] R. Muzzalupo, L. Tavano, R. Cassano, S. Trombino, T. Ferrarelli and N. Picci, A new approach for the evaluation of niosomes as effective transdermal drug delivery systems, Eur. J. Pharm. Biopharm. Vol 79 (2011), pp.28-35. 59.

DOI: 10.1016/j.ejpb.2011.01.020

Google Scholar

[6] R.J. Reiter, J.R. Calvo, M. Karbownik, W. Qi and D.X. Tan, Melatonin and its relation to the immune system and inflammation, Ann. N. Y. Acad Sci. Vol. 917 (2000), pp.376-386. 59.

DOI: 10.1111/j.1749-6632.2000.tb05402.x

Google Scholar

[7] A. Slominski, D.J. Tobin, M.A. Zmijewski, J. Wortsman and R. Paus, Melatonin in the skin: synthesis, metabolism and functions, Trends Endocrin. Met. Vol. 19(1) (2008), pp.17-24. 59.

DOI: 10.1016/j.tem.2007.10.007

Google Scholar

[8] B. Claustrat, J. Brun and G. Chazot, The basic physiology and pathophysiology of melatonin, Sleep Med. Rev. Vol. 9(1) (2005), pp.11-24. 59.

DOI: 10.1016/j.smrv.2004.08.001

Google Scholar

[9] T.B. Grivas and O.D. Savvidou, Melatonin the light of night in human biology and adolescent idiopathic scoliosis, Scoliosis. Vol. 2 (2007), pp.1-14. 59.

DOI: 10.1186/1748-7161-2-6

Google Scholar

[10] S. Andega, N. Kanikkannan and M. Singh, Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin, J. Control. Release. Vol. 77(1-2) (2001), pp.17-25. 59.

DOI: 10.1016/s0168-3659(01)00439-4

Google Scholar

[11] F. Radogna, M. Diederich and I. Ghibelli, Melatonin: a pleiotropic molecule regulating inflammation, Biochem. Pharmacol. Vol. 80 (2010), pp.1844-52. 59.

DOI: 10.1016/j.bcp.2010.07.041

Google Scholar

[12] F.T. Guilford, U.S. Patent 0020436 (2011).

Google Scholar

[13] N. Kanikkannan, T. Jackson, M.S. Shaik and M. Singh, Evaluation of skin sensitization potential of melatonin and nimesulide by murine local lym, Eur. J. Pharm. Sci. Vol. 14(3) (2001), pp.217-20. 59.

DOI: 10.1016/s0928-0987(01)00176-2

Google Scholar

[14] L. Kikwai, N. Kanikkannan, R.J. Babu and M. Singh, Effect of vehicles on the transdermal delivery of melatonin across porcine skin in vitro. J. Control. Release. Vol. 83(2) (2002), pp.307-311. 59.

DOI: 10.1016/s0168-3659(02)00202-x

Google Scholar

[15] W.A.M. Mulla, S.D. More, S.B. Jamge, A.M. Pawar, M.S. Kazi and M.R. Varde, Evaluation of antiinflammatory and analgesic activities of ethanolic extract of roots Adhatoda vasica Linn, Int. J. Pharm. Tech. Res. Vol. 2(2) (2010), pp.1364-68. 59.

Google Scholar

[16] M. Manconia, J. Pendas, N. Ledon, T. Moreira, C. Sinico, L. Saso and A.M. Fadda, Phycocyanin liposomes for topical anti-inflammatory activity: in-vitro in-vivo studies, J. Pharm. Pharmacol. Vol. 61 (2009), pp.423-430. 59.

DOI: 10.1211/jpp.61.04.0002

Google Scholar

[17] A. Tubaro, P. Dri, M. Melato, G. Mulas, P. Bianchi, P. Del Negro and R. D. Loggia, In the croton oil ear test the effects of non steroidal antiinflammatory drug (NSAIDs) are dependent on the dose of the irritant, Agent. Act.  Vol. 19 (1986).

DOI: 10.1007/bf01971259

Google Scholar