[1]
J.D. Bermúdez, J.V. Segura, E. Vercher, A decision support system methodology for forecasting of time series based on soft computing, Computational Statistics & Data Analysis. 51 (2006) 177 – 191.
DOI: 10.1016/j.csda.2006.02.010
Google Scholar
[2]
Alexandra Kotillová, Very short-term load forecasting using exponential smoothing and ARIMA models, Journal of Information, Control and Management Systems. 9: 2 (2011)85-92.
Google Scholar
[3]
Paris Mastorocostas, ConstantinosHilas, A computational intelligence-based forecasting system for telecommunications time series, Engineering Applications of Artificial Intelligence. 25 (2012)200–206.
DOI: 10.1016/j.engappai.2011.04.004
Google Scholar
[4]
Anne B. Koehler, Ralph D. Snyder, J. Keith Ord, Forecasting models and prediction intervals for the multiplicative Holt–Winters method, International Journal of Forecasting. 17 (2001) 269–286.
DOI: 10.1016/s0169-2070(01)00081-4
Google Scholar
[5]
P. Vroman,M. Happietteand B. Rabenasolo, Fuzzy Adaptation of the Holt-Winter Model for Textile Sales-forecasting, Journal of The Textile Institute. 89: 1 (1998) 78-89.
DOI: 10.1080/00405009808658668
Google Scholar
[6]
J.D. Bermúdez, J.V. Segura & E. Vercher, Holt–Winters Forecasting: An Alternative Formulation Applied to UK Air Passenger Data, Journal of Applied Statistics. 34: 9 (2007) 1075–1090.
DOI: 10.1080/02664760701592125
Google Scholar
[7]
Howard Grubb, Alexina Mason, Long lead-time forecasting of UK air passengers by Holt–Winters methods with damped trend, International Journal of Forecasting. 17 (2001) 71–82.
DOI: 10.1016/s0169-2070(00)00053-4
Google Scholar
[8]
VinkoLepojević, MarijaAnđelković-Pešić, Forecasting Electricity Consumption By Using Holt-Winters And Seasonal Regression Models, Economics and Organization. 8: 4(2011) 421 – 431.
Google Scholar
[9]
Hao-Tien Liu, Mao-Len Wei, An improved fuzzy forecasting method for seasonal time series, Expert Systems with Applications. 37 (2010) 6310–6318.
DOI: 10.1016/j.eswa.2010.02.090
Google Scholar
[10]
Muhammad Hisyam Lee, Maria Elena Nor, Suhartono, HossainJavedaniSadaei, NurHaizumAbdRahman and NurArinaBazilahKamisan, Fuzzy Time Series: An Application to Tourism Demand Forecasting, American Journal of Applied Sciences. 9: 1 (2012) 132-140.
Google Scholar
[11]
Qiang Song andBrad S. Chissom, Forecasting enrollmentswith fuzzy time series- Part I, Fuzzy Sets and Systems. 54 (1993) 1-9.
DOI: 10.1016/0165-0114(93)90355-l
Google Scholar
[12]
Mehdi Khashei, Mehdi Bijari, Gholam Ali RaissiArdali, Improvement of Auto-Regressive Integrated Moving Average models using Fuzzy logic and Artificial Neural Networks (ANNs), Neurocomputing. 72 (2009) 956– 967.
DOI: 10.1016/j.neucom.2008.04.017
Google Scholar
[13]
I-Hong Kuo, Shi-Jinn Horng, Tzong-Wann Kao, Tsung-Lieh Lin, Cheng-Ling Lee, Yi Pan, An improved method for forecasting enrollments based on fuzzy time series and particle swarm optimization, Expert Systems with Applications. 36 (2009) 6108–6117.
DOI: 10.1016/j.eswa.2008.07.043
Google Scholar
[14]
R.J. Kuo, A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm, European Journal of Operational Research. 129: 3(2001) 496–517.
DOI: 10.1016/s0377-2217(99)00463-4
Google Scholar
[15]
Ivanov, V., Shyrokau, B., Augsburg, K. &Algin, V., Fuzzy evaluation of tyre-surface interaction parameters, Journal of Terramechanics. 47(2010) 113-130.
DOI: 10.1016/j.jterra.2009.08.003
Google Scholar
[16]
YeshewatesfaHundecha, AndrasBardossy, Hans-Werner Werner, Development of a fuzzy logic-based rainfall-runoff model, Hydrological Sciences Journal. 46: 3 (2001) 363-376.
DOI: 10.1080/02626660109492832
Google Scholar