Polypyrrole/Graphene Oxide Composite Electrodes for High Energy Density Supercapacitor

Article Preview

Abstract:

Polypyrrole/Graphene oxide composite material (PPy/GO) was synthesized using an in-situ chemical polymerization method. The formation of composite had been shown by the analysis of Fourier transfer of infrared spectroscopy and X-ray diffraction data. Scanning electron and transmission electron microscopy clearly showed sheet-like layered structure of graphite oxide surrounded by polypyrrole. Electrochemical properties were characterized by electrochemical station. We demonstrated the intercalation of conducting polypyrrole into the graphite sheets, and that as electrodes for supercapacitor, the PPy/GO composites (GO0.54) with PPy to GO mass ratio of 5:3 showed a competitive capacitance of 337 F g-1 at a scan rate of 2 mV s-1 than that of PPy alone. Given the electrical and electrochemical properties, we prospect that the PPy/GO composites should find applications in supercapacitors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-149

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. G. Kandalkar, D.S. Dhawale, C.K. Kim, C.D. Lokhande, Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application, Synth. Met. 160 (2010) 1299-1302.

DOI: 10.1016/j.synthmet.2010.04.003

Google Scholar

[2] L.L. Zhang, R. Zhou, X.S. Zhao, Graphene-based materials as supercapacitor electrodes, J. Mater. Chem. 20 (2010) 5983-5993.

Google Scholar

[3] J. Li, H. Q. Xie, Y. Li, Fabrication of graphene oxide/polypyrrole nanowire composite for high performance supercapacitor electrodes, J. Power Sources 241 (2013) 388-395.

DOI: 10.1016/j.jpowsour.2013.04.144

Google Scholar

[4] A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191.

Google Scholar

[5] C. N. R. Rao, A.K. Sood, K.S. Subrahmanyam, A. Govindaraj, Graphene: The New Two-Dimensional Nanomaterial, Angew. Chem. Int. Ed. 48 (2009) 7752-7777.

DOI: 10.1002/anie.200901678

Google Scholar

[6] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797-828.

DOI: 10.1039/c1cs15060j

Google Scholar

[7] J. H. Zhu, M.J. Chen, Q.L. He, L. Shao, S.Y. Wei, Z.H. Guo, An overview of the engineered graphene nanostructures and nanocomposites, Rsc. Advances 3(2013) 22790-22824.

DOI: 10.1039/c3ra44621b

Google Scholar

[8] S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutierrez, F. del Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications, Chemical Society Reviews 42(2013) 794-830.

DOI: 10.1039/c2cs35353a

Google Scholar

[9] Y. Q. Sun, G.Q. Shi, Graphene/polymer composites for energy applications, J. Polym. Sci. Part B-Polymer Physics 51(2013) 231-253.

DOI: 10.1002/polb.23226

Google Scholar

[10] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano 4 (2010) 4806-4814.

DOI: 10.1021/nn1006368

Google Scholar

[11] W. S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc. 80 (1958) 1339.

DOI: 10.1021/ja01539a017

Google Scholar

[12] N. I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater. 11 (1999).

DOI: 10.1021/cm981085u

Google Scholar