[1]
Bamforth, P.B., Heat of hydration of pfa concrete and its effect on strength development, Conference Proceedings, Ashtech 84, Second International Conference on Ash Technology, London, 1984, pp.287-94.
Google Scholar
[2]
Wild, S., Sabir, B.B. and Khatib, J.M., Factors influencing strength development of concrete containing silica fume, Cement and Concrete Research, Vol. 25(7), 1995, pp.1567-1580.
DOI: 10.1016/0008-8846(95)00150-b
Google Scholar
[3]
Escalante-Garcia, J.I. and Sharp, J.H., The microstructure and mechanical properties of blended cements hydrated at various temperatures, Cement and Concrete Research, Vol. 31, 2001, pp.695-702.
DOI: 10.1016/s0008-8846(01)00471-9
Google Scholar
[4]
Escalante, J.I., Gomez, L.Y., Johal, K.K., Mendoza, G., Mancha, H. and Mendez, J., Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions, Cement and Concrete Research, Vol. 31, 2001, pp.1403-1409.
DOI: 10.1016/s0008-8846(01)00587-7
Google Scholar
[5]
Bamforth, P.B., Insitu measurement of the effect of partial Portland cement replacement using either fly ash or ground granulated blast-furnace slag on the performance of mass concrete, Proceedings of the ICE Part 2, Vol. 69, 1980, pp.777-800.
DOI: 10.1680/iicep.1980.2377
Google Scholar
[6]
Sellevold, E.J. and Radjy, F.F., Condensed silica fume (microsilica) in concrete: water demand and strength development, ACI Special publication, Vol. 11, 1983, pp.677-694.
Google Scholar
[7]
Saad, M.N.A., De-Andrade, W.P. and Paulon, V.A., Properties of mass concrete containing an active pozzolan made from clay, Concrete International, 1982, pp.59-65.
Google Scholar
[8]
Andriolo, F.R. and Sgaraboza, B.C., The use of pozzolan from calcined clays in preventing excessive expansion due to alkali-silica reaction in some Brazilian dams, Proceedings of the Seventh International Conference on AAR, Ottawa, 1986, pp.253-257.
Google Scholar
[9]
Dhir, R.K., Munday, J.G.L., Ho, N.Y. and Tham, W.K., Pfa in structural precast concrete: measurement of permeability, Concrete, 1986, pp.4-8.
Google Scholar
[10]
Al-Khaja, W.A., Strength and time-dependent deformations of silica fume concrete for use in Bahrain, Construction and Building Materials, Vol. 8(3), 1994, pp.169-172.
DOI: 10.1016/s0950-0618(09)90030-7
Google Scholar
[11]
Haque, M.N., Strength development and drying shrinkage of high-strength concretes. Cement and Concrete Composites, Vol. 18(5), 1996, pp.333-342.
DOI: 10.1016/0958-9465(96)00024-8
Google Scholar
[12]
Hooton, R.D., Influence of silica fume replacement of cement on physical properties and resistance to sulphate attack, freezing and thawing, and alkali silica reactivity, ACI Materials Journal, Vol. 90(2), 1993, pp.143-161.
DOI: 10.14359/4009
Google Scholar
[13]
Zhang, M.H. and Malhotra, V.M., Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete, Cement and Concrete Research, Vol. 25(8), 1995, pp.1713-1725.
DOI: 10.1016/0008-8846(95)00167-0
Google Scholar
[14]
Khatib, J.M., Metakaolin concrete at low water to bonder ratio, Construction and Building Materials, Vol. 22, 2008, pp.1691-1700.
DOI: 10.1016/j.conbuildmat.2007.06.003
Google Scholar
[15]
Nassif, H.H., Najim, H. and Suksawang, N., Effect of pozzolanic material and curing methods on the elastic modulus of HPC, Cement and Concrete Composites, Vol. 27, 2005, pp.661-670.
DOI: 10.1016/j.cemconcomp.2004.12.005
Google Scholar
[16]
Zhang, M.H. and Malhotra, V.M., Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete, Cement and Concrete Research, Vol. 25(8), 1995, pp.1713-1725.
DOI: 10.1016/0008-8846(95)00167-0
Google Scholar
[17]
Aldea, M., Young, F., Wang, K. and Shah, S.P., Effects of curing conditions on properties of concrete using slag replacement, Cement and Concrete Research, Vol. 30(3), 2000, pp.465-472.
DOI: 10.1016/s0008-8846(00)00200-3
Google Scholar
[18]
Cheng, R. H. and Wu, J.K., Influence of GGBS on durability and corrosion behaviour of reinforced concrete, Materials Chemistry and Physics, Vol. 93(2-3), 2005, pp.404-411.
DOI: 10.1016/j.matchemphys.2005.03.043
Google Scholar
[19]
Balaguru, P., Properties of normal and high strength concrete containing metakaolin, ACI Journal of Materials, Vol. 199, 2001, pp.737-756.
Google Scholar
[20]
Bonakdar, A. Bakhshi, M. and Ghalibafian, M., Properties of high-performance concrete containing high reactivity metakaolin, ACI Journal of Materials, Vol. 228, 2001, pp.287-296.
Google Scholar