[1]
J.M. Dempsey. Fiber crops. The Univ. Presses of Florida, Gainesville (1975).
Google Scholar
[2]
M.S. Haque, A. Zakaria, K.B. Adhir et al. Identification of Micrococcus sp. responsible for the acceleration of jute retting.
Google Scholar
[3]
D.A.S. Biwaspriya, Ashis Chakraborty, Sagarmoy Ghosh, Kalyan Chakrabarti. Studies on the effect of pH and carbon sources on enzyme activities on some pectinolytic bacteria isolated from jute retting water. Turk J. Biol 35 (2011) pp.671-678.
DOI: 10.3906/biy-1008-50
Google Scholar
[4]
J. Zhang, G. Henriksson, G. Johansson. Polygalacturonase is the key component in enzymatic retting of flax. J. Biotecknol 81 (2000) pp.85-89.
DOI: 10.1016/s0168-1656(00)00286-8
Google Scholar
[5]
M. Soriano, P. Diaz, F.I.J. Pastor. Pectinolytic systems of two aerobic sporagenous bacterial strains with high activity on pectin. Curr Microbiol 50 (2005) pp.114-118.
DOI: 10.1007/s00284-004-4382-8
Google Scholar
[6]
Z. Ahmed, F. Akhter. Jute retting : an overview. Online J. Biol. Sci. 1 (2001) pp.685-688.
Google Scholar
[7]
P. Albershiem. Pectin lyase from fungi. Meth. Enzymol. 8 (1966) pp.628-631.
Google Scholar
[8]
Ss. Pereira, E.F. Torres, G.V. Gonzales, M.G. Rojes, Effect of different carbon sources on synthesis of pectinase by Aspergillus niger in submerged and solid fermentations, Appl. Microbiol, Biotechnol, 39 (1993) pp.36-41.
DOI: 10.1007/bf00166845
Google Scholar
[9]
G. Larios, J.M. Garcia, C. Huiton, Endopolygalacturonase production from untreated lemon peel by Aspergillus sp CH-Y-1043, Biotechnol. Lett, 11 (1989) pp.729-734.
DOI: 10.1007/bf01044106
Google Scholar
[10]
F. Federici, M. Petruccioli, Growth and polygalacturonase production by Aureobasidium pullulans on orange peel waste, Microb. Alim. Nutri, 3 (1885) pp.39-46.
Google Scholar
[11]
M.J.V. Fonseca, S. Said, The pectinase produced by Tubercularia vulgaris in submerged culture using pectin or orange-pulp pellets as inductor, Appl. Microbiol. Biotechnol, 42 (1995) pp.32-35.
DOI: 10.1007/bf00170220
Google Scholar
[12]
E. Chorin, D. Thuault, J. Cleret. C. Bourgeois. Modelling Bacillus cereus growth. Inernational Journal of Food Microbiology. 38 (1997) 229-234.
DOI: 10.1016/s0168-1605(97)00110-4
Google Scholar
[13]
K. Koo, P.M.N. Foegeding, H.E. Swaisgood. Development of streptavidin-conjugated single-chain antibody that binds Bacillus cereus spore. Appl. Environ. Microbiol. 64(7) (1998) 2497- 2502.
DOI: 10.1128/aem.64.7.2497-2502.1998
Google Scholar
[14]
K.P. Francis, R. Mayr, F. von Stetten, G.S.A.B. Stewart, S. Scherer. Discrimnation of psychotrophic and mesophilic strains of Bacillus cereus group by PCR targeting major cold shock protein genes. Appl. Environ. Microbial. 64(9) (1998).
DOI: 10.1128/aem.64.9.3525-3529.1998
Google Scholar
[15]
K.M. Johnson. Bacillus cereus foodborne illness-An update. J. Food Protect. 47 (1984) pp.145-153.
Google Scholar
[16]
J.M. Goepfert, W.M. Spira, H.U. Kim. Bacillus cereus: food poisoning organism. A review. J. Milk Food 35 (1972) pp.213-227.
DOI: 10.4315/0022-2747-35.4.213
Google Scholar
[17]
T. Sakai, T. Sakamoto, J. Hallaert, E.J. Vandamme. Pectin, pectinase and protopectinase: production, properties and applications. Adv. Appl. Microbiol. 39 (1993) pp.231-294.
DOI: 10.1016/s0065-2164(08)70597-5
Google Scholar
[18]
R.S. Jayani, S. Saxena, R. Gupta. Microbial pectinolytic enzyme: A review. Process Biochem. 40 (2005) pp.2931-2944.
DOI: 10.1016/j.procbio.2005.03.026
Google Scholar
[19]
D. Voet, J.G. Voet. In: Biochemistry. 2nd ed. John Wiley & Sons, Inc. pp.360-362 (1995).
Google Scholar
[20]
Biwaspriya D.A.S., Ashis C., Sagarmoy G., Kaylan C. (2011). Studies on the effect of pH and carbon sources on enzyme activities of some pectinolytic bacteria isolated from jute retting water. Turk. J. Biol. 35: 671-678.
DOI: 10.3906/biy-1008-50
Google Scholar