An Analytical Imaging Algorithm for Airborne Parallel Translational Variant SAR Data Focusing

Article Preview

Abstract:

For focusing airborne parallel translational variant SAR, an analytical imaging algorithm based on the extended Loffeld bistatic formula (ELBF) is proposed. With the bistatic geometry, point target (PT) position offsets to the transmitter track are expressed in terms of PT position offsets to the receiver track. Then phase terms of spectrum are divided into range and azimuth phase terms. The bistatic deformation (BD) term is compensated in 2-D frequency domain, and space variances of range and azimuth phase terms are eliminated by chirp scaling (CS) method and chirp z-transform (CZT) respectively. The proposed imaging algorithm is verified by simulations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

509-513

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Walterscheid, J. H. G. Ender, A. R. Brenner, et al: Bistatic SAR processing and experiments. IEEE Trans. Geosci. Remote Sens., Oct. 2006, vol. 44, no. 10, pp.2710-2717.

DOI: 10.1109/tgrs.2006.881848

Google Scholar

[2] Y. F. Shao, R. Wang, Y. K. Deng, et al: Fast backprojection algorithm for bistatic SAR imaging. IEEE Geosci. Remote Sens. Lett., Sep. 2013, vol. 10, no. 5, pp.1080-1084.

DOI: 10.1109/lgrs.2012.2230243

Google Scholar

[3] R. Wang, O. Loffeld, H. Nies, et al: Chirp-scaling algorithm for bistatic SAR data in the constant-offset configuration. IEEE Trans. Geosci. Remote Sens., Mar. 2009, vol. 47, no. 3, pp.952-964.

DOI: 10.1109/tgrs.2008.2006275

Google Scholar

[4] A. Zare, M. A. Masnadi-Shirazi, et al: Range-Doppler Algorithm for processing bistatic SAR data based on the LBF in the constant-offset constellation. Proc. EUSAR 2012, pp.17-21.

DOI: 10.1109/radar.2012.6212104

Google Scholar

[5] F. H. Wong, I. G. Cumming, and Y. L. Neo: Focusing bistatic SAR data using the nonlinear chirp scaling algorithm. IEEE Trans. Geosci. Remote Sens., Sep. 2008, vol. 46, no. 9, pp.2493-2505.

DOI: 10.1109/tgrs.2008.917599

Google Scholar

[6] R. Wang, Y. K. Deng, O. Loffeld, et al: Processing the azimuth–variant bistatic SAR data by using monostatic imaging algorithm based on two-dimensional principle of stationary phase. IEEE Trans. Geosci. Remote Sens., Oct. 2011, vol 49, no. 10, pp.3504-3519.

DOI: 10.1109/tgrs.2011.2129573

Google Scholar

[7] K. Natroshvili, O. Loffeld, H. Nies, et al: Focusing of general bistatic SAR configuration data with 2-D inverse scaled FFT. IEEE Trans. Geosci. Remote Sens., Oct. 2006, vol. 44, no. 10, pp.2718-2727.

DOI: 10.1109/tgrs.2006.872725

Google Scholar

[8] Y. J. Wu, and Y. Huang: Airborne bistatic SAR imaging for parallel translational variant configuration. Proc. IEEE CIE Int. Conf. on Radar, 2011, pp.854-857.

DOI: 10.1109/cie-radar.2011.6159675

Google Scholar

[9] R. Wang, O. Loffeld, Q. Ul-Ann, et al: A bistatic point target reference spectrum for general bistatic SAR focusing. IEEE Geosci. Remote Sens. Lett., Jul. 2008, vol. 5, no. 3, pp.517-521.

DOI: 10.1109/lgrs.2008.923542

Google Scholar

[10] R. Lanari: A new method for the compensation of the SAR range cell migration based on the chirp z-transform. IEEE Trans. Geosci. Remote Sens., May 1995, vol. 33, no. 5, pp.1296-1299.

DOI: 10.1109/36.469496

Google Scholar