Bottom-Up Fabrication of Optical Metamaterials

Article Preview

Abstract:

A metamaterial is an artificially structured material which attains its properties from the unit structure rather than the constituent materials. Here, artificially designed silver dendritic structure was used as basic cells to fabricate metamaterials working at IR frequency range, silver dendritic structure was prepared in the mixture of F127 and PEG, then assembled on glass substrate by self-assembly process and further fabricated into sandwich-like metamaterials with Indium-Tin-Oxides (ITO) glass. Micro-morphology of the dendrites array was examined by scanning electron microscopy. These complex-structured metamaterials exhibit pass-bands at IR frequencies, and show slab focusing effect subsequently.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-6

Citation:

Online since:

March 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. C. Atre, A. García-Etxarri, H. Alaeian: Adv. Opt. Mat. Vol. 1(2013), P. 327.

Google Scholar

[2] L. Feng, Y. L. Xu, W. S. Fegadolli: Nat. Mater. Vol. 12(2013), P. 108.

Google Scholar

[3] A. M. Hawkes, A. R. Katko, S. A. Cummer: Appl. Phy. Lett. Vol. 103(2013), P. 163901.

Google Scholar

[4] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart: IEEE. Trans. Microwave Theory Tech. Vol. 47 (1999), P. (2075).

Google Scholar

[5] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz: Phys. Rev. Lett. Vol. 84 (2000), P. 4184.

Google Scholar

[6] V. G. Veselago: Sov. Phys. Uspekhi-USSR. Vol. 10 (1968),P. 509.

Google Scholar

[7] W. J. Padilla, D. N. Basov, D. R. Smith: Mater. Today Vol. 9 (2006), P. 28.

Google Scholar

[8] C. M. Soukoulis, M. Kafesaki, E. N. Economou: Adv. Mater. Vol. 18 (2006), P. (1941).

Google Scholar

[9] V. M. Shalaev, Nat. Photo. Vol. 1 (2007), P. 41.

Google Scholar

[10] V. G. Veselago, E. E. Narimanov: Nature, Vol. 5 (2006), P. 759.

Google Scholar

[11] R. A. Shelby, D. R. Smith, and S. Schultz, Science Vol. 292(2001), P. 77.

Google Scholar

[12] A. N. Grigorenko:, Nature Vol. 438 (2005), P. 335.

Google Scholar

[13] S. Zhang, W. Fan, Panoiu: Phys. Rev. Lett. Vol. 95, (2005), P. 137404.

Google Scholar

[14] G. Dolling, M. Wegener, C. M. Soukoulis: Science Vol. 312(2006), P. 892.

Google Scholar

[15] G. Dolling: Opt. Lett. Vol. 31(2006), P. 1800.

Google Scholar

[16] X. Zhou, Q. F. Fu, J. Zhao, Y. Yang, X. P. Zhao: Opt. Express Vol. 14 (2006), P. 7188.

Google Scholar

[17] H. Liu, X. P. Zhao, Y. Yang, Q. W. Li, J. Lv: Adv. Mater. Vol. 20 (2008), P. (2050).

Google Scholar

[18] B. Q. Liu, X. P. Zhao, W. R. Zhu, W. Luo, X. C. Cheng: Adv. Funct. Mater. Vol. 18 (2008), P. 3523.

Google Scholar

[19] A. Boltasseva, V. M. Shalaev: Metamaterials Vol. 2 (2008), P. 1.

Google Scholar