Comparing Robustness of EWMA Dispersion Control Chart for Non-Normal Process

Article Preview

Abstract:

This article discusses robustness to non-normality of EWMA charts for dispersion. Comparison analysis of run length of four kinds of EWMA charts to monitoring process dispersion is provided to evaluate control charts performance and robustness. At last robust EWMA dispersion charts for non-normal processes are proposed by this way.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 912-914)

Pages:

1189-1192

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Montgomery, D. C. Introduction to statistical quality control [M]. 4th ed., 2001, New York: John Wiley & Sons.

Google Scholar

[2] Z. G. Stoumbos, M. R. Reynolds, Robustness to non-normality and autocorrelation of individuals control charts [J], Journal of statistical computing simulation, 2000, 66, 145-187.

DOI: 10.1080/00949650008812019

Google Scholar

[3] Stoumbos, Z. G., Sullivan, J. H. Robustness to non normality of the multivariate EWMA control chart [J], Journal Quality Technology, 2002), 34: 260-276.

DOI: 10.1080/00224065.2002.11980157

Google Scholar

[4] Testik, M. C., Runger, G. C., Borror, C. M. Robustness properties of multivariate EWMA control charts [J], Qual. Reliabil. Eng. Int, 2003, 19: 31-38.

DOI: 10.1002/qre.498

Google Scholar

[5] Kit C.B.R., Ronald, J.M. Shewhart-Type Control Charts in Nonstandard Situations [J], Technometrics, 1995, 37(1): 15-24.

DOI: 10.2307/1269147

Google Scholar

[6] Petros, E. M., John, P., Stelios, P. An Examination of the Robustness to Non Normality of the EWMA Control Charts for the Dispersion [J]. Communications in Statistics-Simulation and Computation, 2005, 34: 1069-1079.

DOI: 10.1080/03610910500308719

Google Scholar

[7] Wortham, A. W., Ringer, L. J. Control via Exponential Smoothing [J]. Transportation and Logistic Review, 1971, 7: 33-39.

Google Scholar

[8] Stoumbos, Z. G., Reynolds, M. R. Jr. Robustness to Non Normality and Autocorrelation of Individual Control Charts [J]. Journal of Statistical Computation and Simulation, 2000, 66: 145-187.

DOI: 10.1080/00949650008812019

Google Scholar

[9] Crowder, S., Hamilton, M. An EWMA for Monitoring Standard Deviation [J]. Journal of Quality Technology, 1992, 24: 12-21.

DOI: 10.1080/00224065.1992.11979369

Google Scholar

[10] Domangue, R., Patch, S. C. Some Omnibus Exponentially Weighted Moving Average Statistical Process Monitoring Schemes [J]. Technometrics, 1991, 33: 299-313.

DOI: 10.1080/00401706.1991.10484836

Google Scholar

[11] Lu Chao-Wen, Reynolds. Jr, EWMA Control Charts for Monitoring the Mean of Autocottelated Processes [J]. Journal of Quality Technology, 1999, 31(2): 166-188.

DOI: 10.1080/00224065.1999.11979913

Google Scholar