Constructing Elliptic Curves over Ramanujan's Class Invariants

Article Preview

Abstract:

The Complex Multiplication (CM) method is a widely used technique for constructing elliptic curves over finite fields. The key point in this method is parameter generation of the elliptic curve and root compution of a special type of class polynomials. However, there are several class polynomials which can be used in the CM method, having much smaller coefficients, and fulfilling the prerequisite that their roots can be easily transformed to the roots of the corresponding Hilbert polynomials.In this paper, we provide a method which can construct elliptic curves by Ramanujan's class invariants. We described the algorithm for the construction of elliptic curves (ECs) over imaginary quadratic field and given the transformation from their roots to the roots of the corresponding Hilbert polynomials. We compared the efficiency in the use of this method and other methods.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 915-916)

Pages:

1336-1340

Citation:

Online since:

April 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Frey, H.G. Rück, A remark concerning m-divisibility and the discrete logarithm problem in the divisor class group of curves, Mathematics of Computation 62 (1994) 865-874.

DOI: 10.1090/s0025-5718-1994-1218343-6

Google Scholar

[2] A.J. Menezes, T. Okamoto, S.A. Vanstone, Reducing elliptic curve logarithms to a finite field, Institute of Electrical and Electronics Engineers. Transactions on Information Theory 39 (1993) 1639-1646.

DOI: 10.1109/18.259647

Google Scholar

[3] G.C. Pohlig, M.E. Hellman, An improved algorithm for computing logarithms over GF. p/ and its cryptographic significance, Institute of Electrical and Electronics Engineers. Transactions on Information Theory 24 (1978) 106-110.

DOI: 10.1109/tit.1978.1055817

Google Scholar

[4] T. Satoh, K. Araki, Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves, Commentarii Mathematici Universitatis Sancti Pauli 47 (1998) 81-91.

Google Scholar

[5] A.O.L. Atkin, F. Morain, Elliptic curves and primality proving, Mathematics of Computation 61 (1993) 29-67.

DOI: 10.1090/s0025-5718-1993-1199989-x

Google Scholar

[6] G.J. Lay, H. Zimmer, Constructing elliptic curves with given group order over large finite fields, in: Algorithmic Number Theory, ANTS-I, in: LNCS, vol. 877, Springer-Verlag, 1994, pp.250-263.

DOI: 10.1007/3-540-58691-1_64

Google Scholar

[7] R. Schoof, Counting points on elliptic curves over finite fields, Journal de Theorie des Nombres de Bordeaux 7 (1995) 219-254.

DOI: 10.5802/jtnb.142

Google Scholar

[8] R. Schertz, Weber's class invariants revisited, Journal de Théorie des Nombres de Bordeaux 4 (2002) 325-343.

DOI: 10.5802/jtnb.361

Google Scholar

[9] Elisavet Konstantinou, Aristides Kontogeorgis, Ramanujan's class invariants and their use in elliptic curve cryptography, computers and mathmematics with applications, 59(2010)2901-2917.

DOI: 10.1016/j.camwa.2010.02.008

Google Scholar

[10] E. Konstantinou, A. Kontogeorgis, Computing polynomials of the Ramanujan tn class invariants, Canadian Mathematical Bulletin 52 (4) (2009) 583-597.

DOI: 10.4153/cmb-2009-058-6

Google Scholar

[11] S. Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, (1957).

Google Scholar

[12] B.C. Berndt, H.H. Chan, Ramanujan and the modular j-invariant, Canadian Mathematical Bulletin 42 (4) (1999) 427-440.

DOI: 10.4153/cmb-1999-050-1

Google Scholar

[13] A. Gee, Class invariants by Shimura's reciprocity law, Journal de Théorie des Nombres de Bordeaux 11 (1999) 45-72.

DOI: 10.5802/jtnb.238

Google Scholar

[14] A. Gee, P. Stevenhagen, Generating class fields using Shimura reciprocity, in: Algorithmic Number Theory (Portland, OR, 1998), in: LNCS, vol. 1423, Springer-Verlag, 1998, pp.441-453.

DOI: 10.1007/bfb0054883

Google Scholar

[15] William B. Hart, Schläfli modular equations for generalized Weber functions, Ramanujan J (2008) 15: 435–468.

DOI: 10.1007/s11139-007-9087-8

Google Scholar