[1]
G. Frey, H.G. Rück, A remark concerning m-divisibility and the discrete logarithm problem in the divisor class group of curves, Mathematics of Computation 62 (1994) 865-874.
DOI: 10.1090/s0025-5718-1994-1218343-6
Google Scholar
[2]
A.J. Menezes, T. Okamoto, S.A. Vanstone, Reducing elliptic curve logarithms to a finite field, Institute of Electrical and Electronics Engineers. Transactions on Information Theory 39 (1993) 1639-1646.
DOI: 10.1109/18.259647
Google Scholar
[3]
G.C. Pohlig, M.E. Hellman, An improved algorithm for computing logarithms over GF. p/ and its cryptographic significance, Institute of Electrical and Electronics Engineers. Transactions on Information Theory 24 (1978) 106-110.
DOI: 10.1109/tit.1978.1055817
Google Scholar
[4]
T. Satoh, K. Araki, Fermat quotients and the polynomial time discrete log algorithm for anomalous elliptic curves, Commentarii Mathematici Universitatis Sancti Pauli 47 (1998) 81-91.
Google Scholar
[5]
A.O.L. Atkin, F. Morain, Elliptic curves and primality proving, Mathematics of Computation 61 (1993) 29-67.
DOI: 10.1090/s0025-5718-1993-1199989-x
Google Scholar
[6]
G.J. Lay, H. Zimmer, Constructing elliptic curves with given group order over large finite fields, in: Algorithmic Number Theory, ANTS-I, in: LNCS, vol. 877, Springer-Verlag, 1994, pp.250-263.
DOI: 10.1007/3-540-58691-1_64
Google Scholar
[7]
R. Schoof, Counting points on elliptic curves over finite fields, Journal de Theorie des Nombres de Bordeaux 7 (1995) 219-254.
DOI: 10.5802/jtnb.142
Google Scholar
[8]
R. Schertz, Weber's class invariants revisited, Journal de Théorie des Nombres de Bordeaux 4 (2002) 325-343.
DOI: 10.5802/jtnb.361
Google Scholar
[9]
Elisavet Konstantinou, Aristides Kontogeorgis, Ramanujan's class invariants and their use in elliptic curve cryptography, computers and mathmematics with applications, 59(2010)2901-2917.
DOI: 10.1016/j.camwa.2010.02.008
Google Scholar
[10]
E. Konstantinou, A. Kontogeorgis, Computing polynomials of the Ramanujan tn class invariants, Canadian Mathematical Bulletin 52 (4) (2009) 583-597.
DOI: 10.4153/cmb-2009-058-6
Google Scholar
[11]
S. Ramanujan, Notebooks. Vols. 1, 2, Tata Institute of Fundamental Research, Bombay, (1957).
Google Scholar
[12]
B.C. Berndt, H.H. Chan, Ramanujan and the modular j-invariant, Canadian Mathematical Bulletin 42 (4) (1999) 427-440.
DOI: 10.4153/cmb-1999-050-1
Google Scholar
[13]
A. Gee, Class invariants by Shimura's reciprocity law, Journal de Théorie des Nombres de Bordeaux 11 (1999) 45-72.
DOI: 10.5802/jtnb.238
Google Scholar
[14]
A. Gee, P. Stevenhagen, Generating class fields using Shimura reciprocity, in: Algorithmic Number Theory (Portland, OR, 1998), in: LNCS, vol. 1423, Springer-Verlag, 1998, pp.441-453.
DOI: 10.1007/bfb0054883
Google Scholar
[15]
William B. Hart, Schläfli modular equations for generalized Weber functions, Ramanujan J (2008) 15: 435–468.
DOI: 10.1007/s11139-007-9087-8
Google Scholar