Two Methods for Edge Reflection Problems in Circular Cylinders

Article Preview

Abstract:

Two methods based on modal decomposition in circular cylinders are presented here. One is based on bi-orthogonality relation and the other is based on boundary discretization for mode matching. The two methods are comprised in numerical implementation and the efficiencies are evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 915-916)

Pages:

94-97

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. L. Rose: IEEE Trans. On Ultrasonics, Ferroelectrics and Frequency Control, Vol. 47(2000), p.575.

Google Scholar

[2] F. Seco, J. M. Martín, A. R. Jiménez: IEEE Trans. on Instrumentation and Measurement, Vol 58(2009), p.722.

Google Scholar

[3] A. H. Nayfeh, P. B. Nagy: J. Acoust. Soc. Am, Vol 99(1996), p.931.

Google Scholar

[4] J. Ma, M. J. S. Lowe, F. Simonetti: IEEE Trans. on Ultrasonics, Ferroel. and Freq. Control, Vol. 54(2007), p.647.

Google Scholar

[5] R.D. Gregory, I. Gladwell: Journal of Elasticity, Vol. 13(1983), p.185.

Google Scholar

[6] S.Y. Zhang, J.Z. Shen, C.F. Ying: Materials Evaluation, Vol. 46(1988), p.638.

Google Scholar

[7] F.L. Feng, J.Z. Shen, J.J. Deng, Q.P. Wang: Advanced Materials Research, Vols. 199-200 (2011) p.949.

Google Scholar

[8] R.D. Gregory, I. Gladwell: Journal of Elasticity, Vol. 13(1983), p.351.

Google Scholar

[9] K. F. Graff: Wave Motion in Elastic Solids(Dover, 1991).

Google Scholar

[10] B. A. Auld: Acoustic Fields and Waves in Solids(Wiley Interscience, 1973).

Google Scholar

[11] V. Pagneux and A. Maurel: Proc. R. Soc. A., Vol. 462(2006), p.1315.

Google Scholar