Photocatalytic Degradation of Diisopropanolamine in Heterogeneous Photo-Fenton System

Article Preview

Abstract:

Photodegradation of 100 ppm diisopropanolamine (DIPA) was studied employing heterogeneous photo-Fenton system using iron modified TiO2 photocatalyst. A series of Fe/TiO2 photocatalysts were prepared via hydrolysis-hydrothermal and wet impregnation methods. Photocatalysts prepared using wet impregnation method was found to have similar activity under both UV and visible light. Addition of H2O2 during the photodegradation study obviously promoted the COD removal efficiency. When stoichiometric concentration of H2O2 was added, as high as 80% of COD was removed within 1.5 h reaction. Further modification is required to increase the photocatalyst performance in photodegradation of DIPA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

160-167

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Processing Natural Gas (n. d). Citing Websites. NaturalGas. org. Retrieved January 3, 2012, from http: /www. naturalgas. org/naturalgas/processing_ng. asp.

Google Scholar

[2] A.I. Kohl, R. B Nielsen. Gas Purification. 5th ed., Gulf Publishing Company, Houston, TX, USA, (1997).

Google Scholar

[3] M. Furhacker, A. Pressl, R. Allabashi, Aerobic biodegradability of methyldiethanolamine (MDEA) used in natural gas sweetening plants in batch tests and continuous flow experiments, Chemosphere 52 (2003) 1743-1748.

DOI: 10.1016/s0045-6535(03)00371-0

Google Scholar

[4] A. A Omar, R.M. Ramli, P.F. Khamaruddin, Fenton oxidation of natural gas plant wastewater, Canadian Journal on Chemical Engineering & Technology 1(1) (2010) 1-6.

Google Scholar

[5] M. Vinita, R. Praveena Juliya Dorathi, K. Palanivelu, Degradation of 2, 4, 6-trichlorophenol by photo Fenton's like method using nano heterogeneous catalytic ferric ion, Solar Energy 84(9) (2010) 1613-1618.

DOI: 10.1016/j.solener.2010.06.008

Google Scholar

[6] A. Neren Okte, S. Akalin, Iron (Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity, Reac Kinet Mech Cat. 100 (2010) 55-70.

DOI: 10.1007/s11144-010-0168-0

Google Scholar

[7] X. Shen, J. Zhang, B. Tian, Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile, Journal of Hazardous Materials 192 (2011) 651-657.

DOI: 10.1016/j.jhazmat.2011.05.066

Google Scholar

[8] C. Adan, J. Carbajo, A. Bahamonde, A. Martı´nez-Arias, 2009. Phenol photodegradation with oxygen and hydrogen peroxide over TiO2 and Fe-doped TiO2, Catalysis Today 143(2009) 247-252.

DOI: 10.1016/j.cattod.2008.10.003

Google Scholar

[9] B. Tryba, A.W. Morawski, M. Inagaki, M. Toyoda, Mechanism of phenol decomposition on Fe-C-TiO2 and Fe-TiO2 photocatalysts via photo-Fenton process, Journal of Photochemistry and Photobiology A Chemistry 179 (2006) 224-228.

DOI: 10.1016/j.jphotochem.2005.08.019

Google Scholar

[10] M. Asiltürk, F. Sayılkan, E. Arpac, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation, Journal of Photochemistry and Photobiology A Chemistry 203 (2009) 64-71.

DOI: 10.1016/j.jphotochem.2008.12.021

Google Scholar

[11] N. Banić, B. Abramović, J. Krstic, D. Sojic, L. Davor, Z. Cherkezova-Zheleva, V. Guzsvány, Photodegradation of thiacloprid using Fe/TiO2 as a heterogeneous photo-Fenton catalyst, Applied Catalysis B: Environmental 107(3-4) (2011) 363-371.

DOI: 10.1016/j.apcatb.2011.07.037

Google Scholar

[12] N.A. Jamalluddin, A.Z. Abdullah, Reactive dye degradation by combined Fe(III)/TiO2 catalyst and ultrasonic irradiation: Effect of Fe(III) loading and calcination temperature, Ultrasonics Sonochemistry, 18 (2011) 669-678.

DOI: 10.1016/j.ultsonch.2010.09.004

Google Scholar

[13] N.D. Abazovic´, L. Mirenghi, I.A. Jankovic´, N. Bibic´, D.V. Sojic´,B.F. Abramovic´, M.I. Comor, Synthesis and characterization of rutile TiO2 nanopowders doped with iron ions, Nanoscale Res. Lett. 4 (2009) 518-525.

Google Scholar

[14] A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces principles, mechanisms and selected results, Chem. Revision 95 (1995) 735-758.

DOI: 10.1021/cr00035a013

Google Scholar

[15] M. Klare, J. Scheen, K. Vogelsang, H. Jacobs, J.A.C. Broekaert, Degradation of short-chain alkyl- and alkanolamines by TiO2- and Pt/TiO2-assisted photocatalysis, Chemosphere 41 (2000) 353-362.

DOI: 10.1016/s0045-6535(99)00447-6

Google Scholar

[16] I. Eide-Haugmo, O.G. Brakstad, K.A. Hoff, K.R. Sørheim, E.F. da Silva, H.F. Svendsen, Environmental impact of amines, Energy Procedia 1(1) (2009) 1297-1304.

DOI: 10.1016/j.egypro.2009.01.170

Google Scholar

[17] C.S. Lu, C.C. Chen, F.D. Mai, H.K. Li, Identification of the degradation pathways of alkanolamines with TiO2 photocatalysis, Journal of Hazardous Materials 165(1-3) (2009) 306-316.

DOI: 10.1016/j.jhazmat.2008.09.127

Google Scholar

[18] Department of Environment, Malaysia, 1974. Environmental Quality (Sewage and Industrial Effluents) Regulation 1979 [Act 127]. In Environmental Quality Act (EQA).

Google Scholar

[19] J.S. Noh, J.A. Schwarz, Estimation of the point of zero charge of simple oxides by mass titration, Journal of Colloid and Interface Science 130(1) (1989) 157-164.

DOI: 10.1016/0021-9797(89)90086-6

Google Scholar

[20] J. Carbajo, C. Adán, A. Rey, A. Martínez-Arias, A. Bahamonde, Optimization of H2O2 use during the photocatalytic degradation of ethidium bromide with TiO2 and iron-doped TiO2 catalysts, Applied Catalysis B: Environmental 102(1-2) (2011) 85-93.

DOI: 10.1016/j.apcatb.2010.11.028

Google Scholar

[21] A. Di Paola, S. Ikeda, G. Marcì, B. Ohtani, L. Palmisano, Transition metal doped TiO2: physical properties and photocatalytic behaviour, International Journal of Photoenergy 3 (2001) 171-176.

DOI: 10.1155/s1110662x01000216

Google Scholar

[22] V. Kavitha, K. Palanivelu, The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol, Chemosphere 55 (2005) 1235-1243.

DOI: 10.1016/j.chemosphere.2003.12.022

Google Scholar

[23] M. Anpo, M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, Journal of Catalysis 216(1–2) (2003) 505-516.

DOI: 10.1016/s0021-9517(02)00104-5

Google Scholar

[24] M.S. Nahar, K. Hasegawa, S. Kagaya, S. Kuroda, Comparative assessment of the efficiency of Fe-doped TiO2 prepared by two doping methods and photocatalytic degradation of phenol in domestic water suspensions, Science and Technology of Advanced Materials 8 (2007).

DOI: 10.1016/j.stam.2007.04.005

Google Scholar

[25] W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics, The Journal of Physical Chemistry 98(51) (1994) 13669-13679.

DOI: 10.1021/j100102a038

Google Scholar

[26] M. Janus, A. Morawski, New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition, Applied Catalysis B: Environmental 75 (2007) 118-123.

DOI: 10.1016/j.apcatb.2007.04.003

Google Scholar

[27] H. Slimen, A. Houas, J.P. Nogier, Elaboration of stable anatase TiO2 through activated carbon addition with high photocatalytic activity under visible light, Journal of Photochemistry and Photobiology A: Chemistry 221 (2011) 13-21.

DOI: 10.1016/j.jphotochem.2011.04.013

Google Scholar

[28] P. Sathishkumar, S. Anandan, P. Maruthamuthu, T. Swaminathan, M. Zhou, M., Ashokkumar, Synthesis of Fe3+ doped TiO2 photocatalysts for the visible assisted degradation of an azo dye, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375 (2011).

DOI: 10.1016/j.colsurfa.2010.12.022

Google Scholar

[29] X. Shen, J. Zhang, B. Tian, Microemulsion-mediated solvothermal synthesis and photocatalytic properties of crystalline titania with controllable phases of anatase and rutile, Journal of Hazardous Materials 192 (2011) 651-657.

DOI: 10.1016/j.jhazmat.2011.05.066

Google Scholar