[1]
P. Ghods, O.B. Isgor, G. McRae, T. Miller. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement. Cement and Concrete Composites, Vol. 31, No. 1 (2009), p.2.
DOI: 10.1016/j.cemconcomp.2008.10.003
Google Scholar
[2]
X. Feng, Y. Zuo, Y. Tang, X. Zhao, X. Lu. The degradation of passive film on carbon steel in concrete pore solution under compressive and tensile stresses. Electrochimica Acta, Vol. 58 (2011), p.258.
DOI: 10.1016/j.electacta.2011.09.035
Google Scholar
[3]
H. Yu, K.T.K. Chiang, L. Yang. Threshold chloride level and characteristics of reinforcement corrosion initiation in simulated concrete pore solutions. Construction and Building Materials, Vol. 26, No. 1(2012), p.723.
DOI: 10.1016/j.conbuildmat.2011.06.079
Google Scholar
[4]
H. Bohni. Corrosion in Reinforced Concrete Structures. Cambridge, UK: Woodhead Publishing, (2005).
Google Scholar
[5]
K. Asami, M. Kikuchi, In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years. Corrosion Science, Vol. 45 (2003), p.2671.
DOI: 10.1016/s0010-938x(03)00070-2
Google Scholar
[6]
T.D. Marcotte, C.M. Hansson, Corrosion products that form on steel within cement paste. Materials and Structures, Vol. 40 (2007), p.325.
DOI: 10.1617/s11527-006-9170-4
Google Scholar
[7]
C. Andrade, C. Alonso, and F.J. Molina. Cover Cracking as a Function of Rebar Corrosion: Part I-Experimental Test. Materials and Structures, Vol. 26, No. 8 (1993), p.453.
DOI: 10.1007/bf02472805
Google Scholar
[8]
M.P. Webster. The Assessment of Corrosion-damaged Concrete Structures, Birmingham: The University of Birmingham. (2000).
Google Scholar
[9]
C. Fang, K. Lundgren, L. Chen, and C. Zhu. Corrosion Influence on Bond in Reinforced Concrete. Cement and Concrete Research, Vol. 34, No. 11 (2004), p.2159.
DOI: 10.1016/j.cemconres.2004.04.006
Google Scholar
[10]
C. Fang, K. Lundgren, M. Plos, and K. Gylltoft. Bond Behaviour of Corroded Reinforcing Steel Bars in Concrete. Cement and Concrete Research, Vol. 36, No. 10 (2006), p. (1931).
DOI: 10.1016/j.cemconres.2006.05.008
Google Scholar
[11]
D. Tang, T.K.C. Molyneaux, D.W. Law, and R. Gravina. Influence of Surface Crack Width on Bond Strength of Reinforced Concrete. ACI Materials Journal, Vol. 108, No. 1 (2011), p.29.
DOI: 10.14359/51664213
Google Scholar
[12]
H. Yalciner, O. Eren, and S. Sensoy. An Experimental Study on the Bond Strength between Reinforcement Bars and Concrete as a Function of Concrete Cover, Strength and Corrosion Level. Cement and Concrete Research, Vol. 42, No. 5 (2012), p.643.
DOI: 10.1016/j.cemconres.2012.01.003
Google Scholar
[13]
J. Cairns, G.A. Plizzari, Y. Du, D.W. Law, and C. Franzoni. Mechanical Properties of Corrosion-damaged Reinforcement. ACI Materials Journal, Vol. 102, No. 4 (2005), p.256.
Google Scholar
[14]
Y.G. Du, L.A. Clark, and A.H.C. Chan. Residual Capacity of Corroded Reinforcing Bars. Magazine of Concrete Research, Vol. 57, No. 3 (2005), p.135.
DOI: 10.1680/macr.2005.57.3.135
Google Scholar
[15]
Y.G. Du, L.A. Clark, A.H.C. Chan. Effect of corrosion on ductility of reinforcing bars. Magazine of Concrete Research, Vol. 57, No. 7(2005), p.407.
DOI: 10.1680/macr.2005.57.7.407
Google Scholar
[16]
W. Zhang, X. Song, X. Gu, S. Li. Tensile and fatigue behavior of corroded rebars. Construction and Building Materials, Vol. 34 (2012), p.409.
DOI: 10.1016/j.conbuildmat.2012.02.071
Google Scholar