[1]
Kreijger, P., The skin of concrete-composition and properties, Materials and Structures. 100(1984) 275-283.
Google Scholar
[2]
Christensen, R., Mechanics of composite materials. Dover Publications Inc, (2005).
Google Scholar
[3]
Cho, S., Yang, C., Huang, R., Influence of aggregate content on the transport properties of mortar using accelerated chloride migration test, Concrete Science and Engineering, 14(2002)84-90.
Google Scholar
[4]
Yang, C., Cho, S., Influence of aggregate content on the migration coefficient of concrete materials using electrochemical method, Materials Chemistry and Physics. 80(2003)752–757.
DOI: 10.1016/s0254-0584(03)00112-3
Google Scholar
[5]
Shuguang, Li, Three Dimensional Simulation of Drying Shrinkage Micro-cracking in Numerical Concrete Reconstructed from CT Images. PhD Thesis (in Chinese). Beijing: Tsinghua University, (2010).
Google Scholar
[6]
Marinoni, N., Pavese, A., Foi, M., et al., Characterization of mortar morphology in thin sections by digital image processing, Cement and Concrete Research, 35 (2005)1613-1619.
DOI: 10.1016/j.cemconres.2004.09.015
Google Scholar
[7]
Mertens, G., Elsen, J., Use of computer assisted image analysis for the determination of the grain-size distribution of sands used in mortars, Cement and Concrete Research, 368 (2006)1453-1459.
DOI: 10.1016/j.cemconres.2006.03.004
Google Scholar
[8]
Xiufeng Lu, Xila Liu, Weizu, Qin, Estimation of coarse aggregate size distribution from two-dimensional section. Chinese Journal of Rock Mechanics and Engineering (in Chinese), 24(2005): 3107-3112.
Google Scholar
[9]
Shah, S.P., High performance concrete: past, present and future, In: Proceedings of High Performance Concrete - Workability, Strength and Durability, Hong Kong, 2000, pp.3-29.
Google Scholar
[10]
Jinbo, Yang, Experimental Research on the Structure and the In-situ Test Method for the Permeability of Cover Concrete. PhD Thesis (in Chinese). Beijing: Tsinghua University, (2008).
Google Scholar
[11]
Williamson, S., The influence of the permeability of concrete cover on reinforcement corrosion, Magazine of Concrete Research, 53(2001)183-195.
DOI: 10.1680/macr.2001.53.3.183
Google Scholar
[12]
Zhongwei Wu, Huizhen, Lian, High performance concrete (in Chinese), 2nd ed., China railway press, (2005).
Google Scholar
[13]
Bretton, D., Oliver, J. P., Ballivy, G., Diffusivity of Chloride Ions in the Transition Zone between Cement Paste and Granite Interfaces. In: Proceedings 18 of the RILEM International Conference E&FN Spon, London, 1992, p.269–278.
Google Scholar
[14]
Bourdette, B., Ringot, E., Ollivier, J., Modeling of the transition zone porosity, Cement and Concrete Research, 25 (1995) 741– 751.
DOI: 10.1016/0008-8846(95)00064-j
Google Scholar
[15]
Delagrave, A., Bigas, J., Ollivier, J., Influence of the Interfacial Zone on the Chloride Diffusivity of Mortars, Advanced Cement Based Materials, 5(1997) 86-92.
DOI: 10.1016/s1065-7355(96)00008-9
Google Scholar
[16]
Bruggeman, D. A. G., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys., 416(1935) 636–664.
DOI: 10.1002/andp.19354160705
Google Scholar