A Review on Thermomechanical Models of Friction Stir Welding

Article Preview

Abstract:

There are several reported thermomechanical models that can be used to predict friction stir welding (FSW) properties of different alloys. A major application of these models is the computation of material temperature, flow stress, strain rate and strain during the process and/or the resulting residual stress after the process. The models are normally applied to solve energy, mass and force equilibrium equations simultaneously using different numerical approaches. All of the validated models can be reliably used to optimize the FSW process parameters such as tool RPM and transverse speed. The brief review in this article is indented to summarize some of the most commonly used thermomechanical models of FSW along with their main characteristics namely; the Solid Mechanics-based models, Fluid Dynamics-based models, and hybrid/ multiphysics models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

553-559

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.J. Chao, X. Qi, Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6, J. Mat. Process. Manuf. Sci. 7 (1998) 215–233.

DOI: 10.1106/ltkr-jfbm-rgmv-wvcf

Google Scholar

[2] A. Reynolds, X. Deng, T. Seidel, S. Xu, Recent advances in FSW process physics, Proceedings of the International Conference of Joining of Advanced and Specialty Materials, TWI, St. Louis, 2000.

Google Scholar

[3] R.L. Goetz, K.V. Jata, Modeling friction stir welding of titanium and aluminum alloys, in: V. Jata, et al. (Eds.), Friction Stir Welding and Processing, TMS, Warrendale, 2001, pp.35-42.

DOI: 10.4028/www.scientific.net/msf.331-337.1701

Google Scholar

[4] A. Askari, S. Silling, B. London, M.W. Mahoney, Modeling and analysis of friction stir welding processes, in: V. Jata, et al. (Eds.), Friction Stir Welding and Processing, TMS, Warrendale, 2001, pp.43-54.

DOI: 10.1007/978-3-030-37015-2_1

Google Scholar

[5] X. Deng, S. Xu, Solid mechanics simulation of friction stir welding process, Trans. NAMR–SME 29 (2001) 631- 638.

Google Scholar

[6] S. Xu, X. Deng, Three-dimensional model for the friction-stir welding process. Theor. Appl. Mech. 21 (2002) 699-704.

Google Scholar

[7] S. Guerdoux, L. Fourment, M. Miles, C. Sorensen, Numerical simulation of friction stir welding process using both Lagrangian and arbitrary Lagrangian Eulerian formulations, in: S. Ghosh, J.C. Castro, J.K. Lee (Eds.), Proceedings of Materials Processing and Design: Modeling, Simulation and Applications Conference, AIP, Columbus , 2004, pp.1259-1264.

DOI: 10.1063/1.1766702

Google Scholar

[8] L. Fourment, S. Guerdoux, M. Miles, T. Nelson, Numerical simulation of the friction stir welding process using both lagrangian and arbitrary lagrangian eulerian formulations, Proceedings of the Fifth International Conference on Friction Stir Welding, TWI, Metz, 2004.

DOI: 10.1063/1.1766702

Google Scholar

[9] R.W. McCune, H. Ou, C.G. Armstrong, M. Price, Modelling friction stir welding with the finite element method: A Comparative Study, Proceedings of the Fifth International Conference on Friction Stir Welding, TWI, Metz, 2004.

DOI: 10.1533/9781845697716.2.277

Google Scholar

[10] X.K. Zhu, Y.J. Chao, Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel, J. Mat. Process. Tech. 146 (2004) 263-272.

DOI: 10.1016/j.jmatprotec.2003.10.025

Google Scholar

[11] H. Schmidt, J. Hattel, A local model for the thermomechanical conditions in friction stir welding, Modelling Simul. Mat. Sci. Eng. 13 (2005) 77-93.

DOI: 10.1088/0965-0393/13/1/006

Google Scholar

[12] D. Forrest, J. Nguyen, M. Posada, J. Deloach, D. Boyce, J. H. Cho, Simulation of HSLA-65 friction stir welding, Proceedings of the 7th International Conference on Trends in Welding Research, ASM, Pine Mountain, 2005.

Google Scholar

[13] P. Heurtier, M.J. Jones, C. Desrayaud, J. H. Driver, F. Montheillet, D. Allehaux, Mechanical and thermal modelling of friction stir welding, J. Mat. Proc. Technol. 171 (2006) 348-357.

DOI: 10.1016/j.jmatprotec.2005.07.014

Google Scholar

[14] J.H. Cho, P.R. Dawson, Modeling texture evolution during friction stir welding of stainless steel with comparison to experiments, J. Eng. Mat. Technol. 130 (2008) 1-12.

DOI: 10.1115/1.2816902

Google Scholar

[15] Y. He, P.R. Dawson, D.E. Boyce, Modeling damage evolution in friction stir welding process, J. Eng. Mat. Technol. 130 (2008) 1-10.

DOI: 10.1115/1.2840963

Google Scholar

[16] A. Bastier, M.H. Maitournam, F. Roger, K.D. Van, Modelling of the residual state of friction stir welded plates, J. Mat. Process. Technol. 200 (2008) 25–37.

DOI: 10.1016/j.jmatprotec.2007.10.083

Google Scholar

[17] H. Li, D. Mackenzie, Coupled thermo-mechanical modelling of friction stir welding, Proceedings of ASME Pressure Vessels and Piping Division Conference, ASME, San Antonio, 2008.

Google Scholar

[18] H.B. Schmidt, J.H. Hattel, A thermal-pseudo-mechanical model for the heat generation in Friction Stir Welding, Scrip. Mat. 58 (2008) 332–337.

DOI: 10.1016/j.scriptamat.2007.10.008

Google Scholar

[19] O. Lorrain, V. Favier, H. Zahrouni, M.E. Hadrouz, A critical analysis of FSW simulations, Proceedings of 7th International Friction Stir Welding Symposium, TWI, Awaji Island, 2008.

Google Scholar

[20] Z. Zhang, H.W. Zhang, Numerical studies on controlling of process parameters in friction stir welding, J. Mat. Proc. Technol. 209 (2009) 241-270.

DOI: 10.1016/j.jmatprotec.2008.01.044

Google Scholar

[21] L. Fratini, G. Buffa, D. Palmeri, Using a neural network for predicting the average grain size in friction stir welding, processes. Comput. Struc., 87 (2009) 1166-1174.

DOI: 10.1016/j.compstruc.2009.04.008

Google Scholar

[22] F. Gemme, Y. Verreman, L. Dubourg, M. Jahazi, Numerical analysis of the dwell phase in friction stir welding and comparison with experimental data, Mat. Sci. Eng. A. 527 (2010) 4152-4160.

DOI: 10.1016/j.msea.2010.03.026

Google Scholar

[23] M. Assidi, L. Fourment, S. Guerdoux, T. Nelson, Friction model for friction stir welding process simulation : Calibrations from welding experiments, Inter. J. Mach. Tool. Manuf. 50 (2010) 143-155.

DOI: 10.1016/j.ijmachtools.2009.11.008

Google Scholar

[24] P.F. Mendez, K.E. Tello, T.J. Lienert, Scaling of coupled heat transfer and plastic deformation around the pin in friction stir welding, Act. Mat. 58 (2010) 6012-6026.

DOI: 10.1016/j.actamat.2010.07.019

Google Scholar

[25] C.C. Tutum, J.H. Hattel, A multi-objective optimization application in friction stir welding: considering thermo-mechanical aspects, Proceedings of IEEE World Congress on Computational Intelligence and Congress on Evolutionary Computation, IEEE, Barcelona, 2010.

DOI: 10.1109/cec.2010.5586482

Google Scholar

[26] D. Jacquin, B.D. Meester, A. Simar, D. Deloison, F. Montheillet, C. Desrayaud, A simple Eulerian thermomechanical modeling of friction stir welding, J. Mat. Process. Technol, 211 (2011) 57-65.

DOI: 10.1016/j.jmatprotec.2010.08.016

Google Scholar

[27] G. Buffa, A. Ducato, L. Fratini, Numerical procedure for residual stresses prediction in friction stir welding, Finit. Elem. Analy. Design. 47 (2011) 470-476.

DOI: 10.1016/j.finel.2010.12.018

Google Scholar

[28] M. Grujicic, B. Pandurangan, C. Yen, B.A. Cheeseman, Modifications in the AA5083 Johnson-Cook material model for use in friction stir welding computational analyses, J. Mat. Eng. Perform. 21 (2012). 2207-2217.

DOI: 10.1007/s11665-011-0118-7

Google Scholar

[29] A. Simar, Y. Bréchet, B. De Meester, A. Denquin, C. Gallais, T. Pardoen, Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties, Progress Mat. Sci. 57 (2012) 95-183.

DOI: 10.1016/j.pmatsci.2011.05.003

Google Scholar

[30] G.J. Bendzsak, T. North, C. Smith, An experimentally validated 3D model for friction stir welding, Proceedings of the 2nd International Symposium on Friction Stir Welding, TWI, Gothenburg, 2000.

DOI: 10.1108/aa.2000.03320bab.005

Google Scholar

[31] P. Ulysse, Three-dimensional modeling of the friction stir-welding. Process Int. J. Mach. Tools. Manuf., 42 (2002) 1549-1557.

DOI: 10.1016/s0890-6955(02)00114-1

Google Scholar

[32] H.R. Shercliff, P.A. Colegrove, Modelling of friction stir welding, Proceddings of the Mathamathical Modeling of Weld Phenomenon 6 Conference, Maney, Graz, 2002.

Google Scholar

[33] A. P. Reynolds, M.Z.H. Khandkar, T. Long, W. Tang, J.A. Khan, Utility of relatively simple models for understanding process parameter effects on FSW, Mat. Sci. Forum. 426·432 (2003) 2959-2694

DOI: 10.4028/www.scientific.net/msf.426-432.2959

Google Scholar

[34] A. Bastier, M.H. Maitournam, K.D. Van, F. Roger, Steady state thermomechanical modelling of friction stir welding, Sci Technol. Weld. Join. 11 (2006) 278-288.

DOI: 10.1179/174329306x102093

Google Scholar

[35] T. Sato, D. Otsuka, Y. Watanabe, R.S. Division, N. Sharyo Designing of friction stir weld parameters with finite element flow simulation, Proceedings of 6th International Friction Stir Welding Symposium, TWI, Saint Sauveur, 2006.

DOI: 10.1108/acmm.2005.12852dac.001

Google Scholar

[36] R. Crawford, T. Bloodworth, G.E. Cook, A.M. Strauss, D.A. Hartman, High speed friction stir welding process modeling, Proceedings of 6th International Friction Stir Welding Symposium, TWI, Saint Sauveur, 2006.

DOI: 10.1108/acmm.2005.12852dac.001

Google Scholar

[37] I. Alfaro, L. Fratini, E. Cueto, F. Chinesta, F. Micari, Meshless simulation of friction stir welding. Proceedings of the Materials Processing and Design: Modeling, Simulation and Applications Conference, AIP, Porto, 2007.

DOI: 10.1063/1.2740812

Google Scholar

[38] T. De Vuyst, , & L.D Alvise, Material flow around a friction stir welding tool: development of a thermo-fluid code, Weld. World. 51 (2007) 37-43.

DOI: 10.1007/bf03266558

Google Scholar

[39] H. Chen, Y. Zhao, Y. Zhang, L. Wu, S. Lin, , Mechanistic study on friction stir welding of 2014 aluminium alloy, Proceeding of 58th International Astronautical Congress, IAF/IAA, Hyderabad, 2007.

Google Scholar

[40] P.A. Colegrove, H.R. Shercliff, R. Zettler, Model for predicting heat generation and temperature in friction stir welding from the material properties, Sci Technol. Weld. Join. 12 (2007) 284-297.

DOI: 10.1179/174329307x197539

Google Scholar

[41] T. Long, W. Tang, A.P. Reynolds, Process response parameter relationships in aluminium alloy friction stir welds, Sci Technol. Weld. Join. 12 (2007) 311-317.

DOI: 10.1179/174329307x197566

Google Scholar

[42] S.M. Dörfler, Advanced modeling of friction stir welding – improved material model for aluminum alloys and modeling of different materials with different properties by using the level set method, Proceedings of the COMSOL 2008 Conference, COMSOL, Hannover, 2008.

Google Scholar

[43] L. St-georges, L.I. Kiss, V. Dassylva-Raymond, Mixing mechanism in friction stir welding of metallic composites, Proceedings of 7th International Friction Stir Welding Symposium, TWI, Awaji Island, 2008.

DOI: 10.3390/ma7053435

Google Scholar

[44] B.C. Liechty, B.W. Webb, Modeling the frictional boundary condition in friction stir welding., Int. J. Mach. Tool. Manuf. 48 (2008) 1474- 1485.

DOI: 10.1016/j.ijmachtools.2008.04.005

Google Scholar

[45] H. Schmidt, Thermal and material flow modelling of friction stir welding using Comsol, Proceedings of the COMSOL Conference, COMSOL, Hanover, 2008.

Google Scholar

[46] R. Nandan, T.J. Lienert, , T. Debroy, Toward reliable calculations of heat and plastic flow during friction stir welding of TI-6AL-4V alloy, Int. J. Mat. Res. 99 (2008) 434-444.

DOI: 10.3139/146.101655

Google Scholar

[47] A. Kumar, D.P. Fairchild, S.J. Ford, Modeling of heat transfer and material flow during FSW of steel, Proceedings of 7th International Friction Stir Welding Symposium, TWI, Awaji Island, 2008.

Google Scholar

[48] H. Atharifar, D. Lin, R. Kovacevic, Numerical and Experimental Investigations on the Loads Carried by the Tool During Friction Stir Welding, J. Mat. Eng. Perform. 18 (2009) 339-350.

DOI: 10.1007/s11665-008-9298-1

Google Scholar

[49] A. Arora, Z. Zhang, A. De, T. Debroy, Strains and strain rates during friction stir welding, Scrip. Mat. 61 (2009) 863-866.

DOI: 10.1016/j.scriptamat.2009.07.015

Google Scholar

[50] D. Kim, H. Badarinarayan, J. Hoon, C. Kim, K. Okamoto, R.H. Wagoner, Numerical simulation of friction stir butt welding process for AA5083-H18 sheets. Europ. J. Mech./A Solid. 29 (2010) 204-215.

DOI: 10.1016/j.euromechsol.2009.10.006

Google Scholar

[51] M. Nourani, A.S. Milani, S. Yannacopoulos, C. Yan, An integrated multiphysics model for friction stir welding of 6061 Aluminum alloy, Int. J. of Multiphysics (under review), 2013.

DOI: 10.1260/1750-9548.8.1.29

Google Scholar

[52] O.C. Zienkiewicz, P.C. Jain, E. Onate, Flow of solids during forming and extrusion- some aspects of numerical solutions, Int. J. Solids. Struct. 14 (1978) 15-38.

DOI: 10.1016/0020-7683(78)90062-8

Google Scholar