Generation of OAM Radio Waves Using Patch Antenna

Article Preview

Abstract:

This paper introduces a feasible patch antenna to generate OAM-carrying radio beams. Eight identical printed dipole antennas with microstrip balun feedline are arranged in an octahedron cylindrical substrate. Every printed dipole is fed with unit amplitude but with a successive phase difference from element to element. We can change the phase difference at the steps of 0, ±45o, ±90o, and ±135o to obtain mode numbers 0, ±1, ±2, and ±3. Simulation shows that the OAM states of ±1, ±2 and-3 achieve the expected results well, while the state of +3 produce a deviation due to the radiation difference of the designed antenna element and traditional tripole antenna. Furthermore, we achieve the impedance matching of every port and increase the directivity of the antenna. Thus, the proposed antenna is a promising candidate to generate OAM in engineering.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 926-930)

Pages:

2337-2340

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. H. Poynting: Proc. Royal Society of London (London, Britain, November 557, 1909). Vol. 82, p.560.

Google Scholar

[2] R. A. Beth: Physical Review, Vol. 50 (1936) No. 2, P. 115.

Google Scholar

[3] G. A. Turnbull, D. A. Robertson, GM. Smith, L. Allen and M.J. Padgett: Optics Communications, Vol. 127 (1996) No. 4, p.183.

Google Scholar

[4] Xinlun Cai, Jianwei Wang, Michael J. Strain and Benjamin Johnson-Morris: Science, Vol. 338 (2012) No. 6105, p.363.

Google Scholar

[5] B. Thidé, H. Then, J. Sjōholm, K. Palmer, J. Bergman, T. D. Carozzi, Ya. N. Istomin, N. H. Ibragimov and R. Khamitova: Phys. Rev. Lett., Vol. 99 (2007) No. 8, p.087701.

DOI: 10.1103/physrevlett.99.087701

Google Scholar

[6] S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thid'e, K. Forozesh and T. D. Carozzi: IEEE transactions on antennas and propagation, Vol. 58 (2010) No. 2, p.565.

DOI: 10.1109/tap.2009.2037701

Google Scholar

[7] S. M. Mohammadi, L. K. S. Daldorff, K. Forozesh, B. Thidé, J. E. S. Bergman, B. Isham, R. Karlsson and T. D. Carozzi: Radio Science, Vol. 45 (2010) No. 4, p.1.

DOI: 10.1029/2009rs004299

Google Scholar

[8] A. Tennant and B. Allen: Electronics Letters, Vol. 48 (2012) No. 21, p.1365.

Google Scholar

[9] J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. X. Ren and Y. Yue: Nature Photon, Vol. 7 (2012) No. 7, p.488.

Google Scholar

[10] F. Tamburini, E. Mari, A. Sponselli, B. Thid'e, A. Bianchini and F. Romanato: New J. Phys, Vol. 14 (2012) No. 3, p.033001.

DOI: 10.1088/1367-2630/14/3/033001

Google Scholar

[11] O. Edfos and A. J. Johansson: IEEE Transactions on Antennas and Propagation, Vol. 60 (2012) No. 2, p.1126.

Google Scholar

[12] Changjiang Deng, Wenhua Chen, Zhijun Zhang, Yue Li, and Zhenghe Feng: International Journal of Antennas and Propagation, Vol. 2013 (2013), p.847859.

Google Scholar