[1]
M. Verleysen. Learning High-dimensional Data. Limitation and Future Trend in Neural Computation, 2003, pp.141-162.
Google Scholar
[2]
L. Parsons, E. Haque and H. Liu. Subspace Clustering for High Dimensional Data: A Review. ACM SIGKDD Exploration Newsletter, 2004, 6(1): 90-105.
DOI: 10.1145/1007730.1007731
Google Scholar
[3]
C.C. Aggarwal, C. Procopiuc. Fast Algorithms for projected Clustering. Proceedings ACM SIGMOD International Conference on Management of Data . 1999, PP. 61-71.
DOI: 10.1145/304182.304188
Google Scholar
[4]
J. He, M. Lan, C.L. Tan. Initialization of cluster refinement algorithm: a review and comparative study. Proceeding of International Joint Conference on Neural Network, 2004, pp.297-302.
Google Scholar
[5]
C. Bohm, K. Kailing, H.P. Kriegel, P. Kroger. Density connected clustering with local subspace preference. Proceeding of the ICDM, 2004, pp.27-34.
DOI: 10.1109/icdm.2004.10087
Google Scholar
[6]
M. Benkhalifa and A. Bensaid. Text Categorization using the Semi-Supervised Fuzzy c-MeansAlgorithm. Proceeding of the NAFIPS, 1999, pp.561-565.
DOI: 10.1109/nafips.1999.781756
Google Scholar
[7]
M. Steinbach, G. Karypis, V. Kumar. A Comparison of Document Clustering Techniques. http: /www. cs. cmu. edu/~dunja/KDDpapers/Steinbach_IR. pdf.
Google Scholar
[8]
W. Wang, J. Yang, R. Muntz. STING: A Statistical Information Grid Approach to Spatial Data Mining. Athens: Proceedings of the 23rd Conference on VLDB. 1997, pp.186-195.
Google Scholar
[9]
Information on http: /www. searchforum. org. cn/tansongbo/corpus. htm.
Google Scholar