Riccati Equation Solutions to Higher Order Korteweg-de Vries Equation

Article Preview

Abstract:

The traveling wave solutions to the heigher order Korteweg-de Vries equation is obtained by using Riccati equation. The method is straightforward and concise, the applications are promising to obtain traveling wave solutions of various partial differential equations. It is shown that the Riccati equation method, with the symbolic computation, provide an effective and powerful mathematical tools for solving such systems. The numerical simulation of the solutions are given for completeness.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 926-930)

Pages:

3240-3244

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bhrawy, A. Biswas, M. Javidi, W. Ma, Z. Pinar, A. Yildirim, New solutions for (1+1)-dimensional and (2+1)-dimensional Kaup-Kuperschmidt equations. Results in Mathematics. 63 (2013) 675-686.

DOI: 10.1007/s00025-011-0225-7

Google Scholar

[2] T. Trogdon, S. Olver, B. Deconinck, Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations. Physica D: Nonlinear Phenomena. 241 (2012) 1003-1025.

DOI: 10.1016/j.physd.2012.02.016

Google Scholar

[3] Y. Bozhkov, S. Dimas, N. Ibragimov, Conservation laws for a coupled variable-coefficient modified Korteweg-de Vries system in a two- layer fluid model. Communications in Nonlinear Science and Numerical Simulation 18 (2013) 1127-1135.

DOI: 10.1016/j.cnsns.2012.09.015

Google Scholar

[4] D. Salkuyeh, M. Bastani, Solution of the Complex Modified Korteweg-de Vries equation by the projected differential transform method. Applied Mathematics and Computation 219 (2013) 5105-5112.

DOI: 10.1016/j.amc.2012.11.062

Google Scholar

[5] C. Lee, R. Beardsley, The generation of long nonlinear internal waves in a weakly stratified shear flow. J. Geophys. Res., 79 (1974) 453-462.

DOI: 10.1029/jc079i003p00453

Google Scholar

[6] T. Kakutani, N. Yamasaki, Solitary waves in a two-layer fluid. J. Phys. Soc. Japan, 45 (1978) 674-679.

DOI: 10.1143/jpsj.45.674

Google Scholar

[7] A. Gear, R. Grimshaw, A second- order theory for solitary waves in shallow fluids. Phys. Fluids, 26 (1983) 14-29.

DOI: 10.1063/1.863994

Google Scholar

[8] R. Grimshaw, Internal solitary waves, in: Advances in Coastal and Ocean Engineering, (Ed), World Scientific Publishing Company, Singapore, 3 (1997) pp.1-30.

Google Scholar

[9] T. Talipova, E. Pelinovsky, K. Lamb, et al, Cubic effects at the intense internal wave propagation. Doklady Earth Sciences, 365 (1999) 241-244.

Google Scholar

[10] N.A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos, Solitons and Fractals, 24 (2005) 1217-1231.

DOI: 10.1016/j.chaos.2004.09.109

Google Scholar

[11] N. A. Kudryashov, N. B. Loguinova, Extended simplest equation method for nonlinear differential equations, Applied Mathematics and Computation, 205 (2008) 396-402.

DOI: 10.1016/j.amc.2008.08.019

Google Scholar

[12] T. Wang, Y. Ren, Y. Zhao, Exact solutions of (3+ 1)-dimensional stochastic Burgers equation. Chaos, Solitons and Fractals, 29 (2006) 920-927.

DOI: 10.1016/j.chaos.2005.08.056

Google Scholar

[13] B. Ahmet, C. Adem, The tanh-coth method combined with the Riccati equation for solving nonlinear coupled equation in mathematical physics. Journal of King Saud University-Science, 23 (2011) 127-132.

DOI: 10.1016/j.jksus.2010.06.020

Google Scholar