[1]
A. Bhrawy, A. Biswas, M. Javidi, W. Ma, Z. Pinar, A. Yildirim, New solutions for (1+1)-dimensional and (2+1)-dimensional Kaup-Kuperschmidt equations. Results in Mathematics. 63 (2013) 675-686.
DOI: 10.1007/s00025-011-0225-7
Google Scholar
[2]
T. Trogdon, S. Olver, B. Deconinck, Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations. Physica D: Nonlinear Phenomena. 241 (2012) 1003-1025.
DOI: 10.1016/j.physd.2012.02.016
Google Scholar
[3]
Y. Bozhkov, S. Dimas, N. Ibragimov, Conservation laws for a coupled variable-coefficient modified Korteweg-de Vries system in a two- layer fluid model. Communications in Nonlinear Science and Numerical Simulation 18 (2013) 1127-1135.
DOI: 10.1016/j.cnsns.2012.09.015
Google Scholar
[4]
D. Salkuyeh, M. Bastani, Solution of the Complex Modified Korteweg-de Vries equation by the projected differential transform method. Applied Mathematics and Computation 219 (2013) 5105-5112.
DOI: 10.1016/j.amc.2012.11.062
Google Scholar
[5]
C. Lee, R. Beardsley, The generation of long nonlinear internal waves in a weakly stratified shear flow. J. Geophys. Res., 79 (1974) 453-462.
DOI: 10.1029/jc079i003p00453
Google Scholar
[6]
T. Kakutani, N. Yamasaki, Solitary waves in a two-layer fluid. J. Phys. Soc. Japan, 45 (1978) 674-679.
DOI: 10.1143/jpsj.45.674
Google Scholar
[7]
A. Gear, R. Grimshaw, A second- order theory for solitary waves in shallow fluids. Phys. Fluids, 26 (1983) 14-29.
DOI: 10.1063/1.863994
Google Scholar
[8]
R. Grimshaw, Internal solitary waves, in: Advances in Coastal and Ocean Engineering, (Ed), World Scientific Publishing Company, Singapore, 3 (1997) pp.1-30.
Google Scholar
[9]
T. Talipova, E. Pelinovsky, K. Lamb, et al, Cubic effects at the intense internal wave propagation. Doklady Earth Sciences, 365 (1999) 241-244.
Google Scholar
[10]
N.A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations, Chaos, Solitons and Fractals, 24 (2005) 1217-1231.
DOI: 10.1016/j.chaos.2004.09.109
Google Scholar
[11]
N. A. Kudryashov, N. B. Loguinova, Extended simplest equation method for nonlinear differential equations, Applied Mathematics and Computation, 205 (2008) 396-402.
DOI: 10.1016/j.amc.2008.08.019
Google Scholar
[12]
T. Wang, Y. Ren, Y. Zhao, Exact solutions of (3+ 1)-dimensional stochastic Burgers equation. Chaos, Solitons and Fractals, 29 (2006) 920-927.
DOI: 10.1016/j.chaos.2005.08.056
Google Scholar
[13]
B. Ahmet, C. Adem, The tanh-coth method combined with the Riccati equation for solving nonlinear coupled equation in mathematical physics. Journal of King Saud University-Science, 23 (2011) 127-132.
DOI: 10.1016/j.jksus.2010.06.020
Google Scholar