Saliency Detection through Nonlinear Metric Fusion

Article Preview

Abstract:

In order to detect the saliency part in the picture of nature scene, usually, bottom-up saliency models use several feature information such as color and orientation, each feature is taken to compute the saliency map respectively, then these saliency maps are linearly combined to a final saliency map. However, how to fuse these features are still a difficult problem, linearly combined is not appropriate to the human visual system, so in this paper we propose a nonlinear metric fusion strategy with different features namely cross diffusion, it fuse the metric from diverse features which can be used to detect the saliency more appropriate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 926-930)

Pages:

3692-3695

Citation:

Online since:

May 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Karklin, M.S. Lewicki, Emergence of complex cell properties by learning to generalize in natural scenes, Nature 457 (7225), pp.83-86.

DOI: 10.1038/nature07481

Google Scholar

[2] B. Wang, J. Jiang, W. Wang, Z. Zhou, and Z. Tu, Unsupervised metric fusion by cross diffusion. ; In Proceedings of CVPR. 2012, 2997-3004.

Google Scholar

[3] J.G. Yu, J.W. Tian. Saliency detection using midlevel visual cues, Optics Letters 37 (2012) 4994-4996.

DOI: 10.1364/ol.37.004994

Google Scholar

[4] M. Cheng, G. Zhang, N.J. Mitra, X. Huang, S. Hu, Global contrast based salient region detection, In Proceedings of CVPR, 2011, pp.409-416.

DOI: 10.1109/cvpr.2011.5995344

Google Scholar

[5] R. Achanta, S. S. Hemami, F. J. Estrada, S. Sűsstrunk. Frequency-tuned salient region detection, In Proceedings of CVPR, 2009, pp.1597-1604.

DOI: 10.1109/cvpr.2009.5206596

Google Scholar

[6] Y. Zhai, M. Shah, Visual attention detection in video sequences using spatiotemporal cues, In Proceedings of ACM Multimedia, 2006, pp.815-824.

DOI: 10.1145/1180639.1180824

Google Scholar

[7] S. Goferman, L. Zelnik-Manor, A. Tal, Context-Aware Saliency Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence 34 (2012) 1915-(1926).

DOI: 10.1109/tpami.2011.272

Google Scholar

[8] J. Harel, C. Koch, P. Perona, Graph-Based Visual Saliency, In Proceedings of NIPS, 2006, pp.545-552.

Google Scholar