[1]
J. Werther, T. Ogada, Sewage sludge combustion, Prog. Energy Comb. Sci. 25 (1999) 55-116.
DOI: 10.1016/s0360-1285(98)00020-3
Google Scholar
[2]
D. Fytili, A. Zabaniotou, Utilization of sewage sludge in EU application of old and new methods-A review, Renew. Sust. Energy Rev. 12 (2008) 116-140.
DOI: 10.1016/j.rser.2006.05.014
Google Scholar
[3]
G. Gasco, M.J. Cueto, A. Méndez, The effect of acid treatment on the pyrolysis behavior of sewage sludges, J. Anal. Appl. Pyrol. 80 (2007) 496-501.
DOI: 10.1016/j.jaap.2007.03.009
Google Scholar
[4]
M. Inguanzo, A. Dominguez, J. A. Mendéz, C. G. Blanco, J. J. Pis, On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions, J. Anal. Appl. Pyrol. 63 (2002) 209-222.
DOI: 10.1016/s0165-2370(01)00155-3
Google Scholar
[5]
K.H. Lin, H.T. Hsu, Y.W. KO, Z.X. Shieh, H.L. Chiang, Pyrolytic product characteristics of biosludge from the wastewater treatment plant of a petrochemical industry, J. Hazard. Mater. 171 (2009) 208-214.
DOI: 10.1016/j.jhazmat.2009.05.127
Google Scholar
[6]
M. E. Sánchez, J. A. Menéndez, A. Domínguez, J. J. Pis, O. Martínez, L. F. Calvo, P. L. Bernad, Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge, Biom. Bioener. 33 (2009) 933-940.
DOI: 10.1016/j.biombioe.2009.02.002
Google Scholar
[7]
J. A. Conesa, A. Marcilla, R. Moral, J. Moreno-Caselles, A. Perez-Espinosa, Evolution of gases in the primary pyrolysis of different sewage sludges, Thermochim. Acta 313 (1998) 63-73.
DOI: 10.1016/s0040-6031(97)00474-7
Google Scholar
[8]
J. A. Caballero, R. Front, A. Marcilla, J. A. Conesa, Characterization of sewage sludges by primary and secondary pyrolysis, J. Anal. Appl. Pyrol. 40-41 (1997) 433-450.
DOI: 10.1016/s0165-2370(97)00045-4
Google Scholar
[9]
A.V. Bridgwater, D. Meier, D. Radlein, An overview of fast pyrolysis of biomass, Org. Geochem. 30 (1999) 1479–1493.
DOI: 10.1016/s0146-6380(99)00120-5
Google Scholar
[10]
A. Domínguez, J.A. Menéndez, J.J. Pis, Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature, J. Anal. Appl. Pyrol. 77 (2006) 127-132.
DOI: 10.1016/j.jaap.2006.02.003
Google Scholar
[11]
K. Yip, H. Wu, D. Zhang, Effect of inherent moisture in collie coal during pyrolysis due to in-situ steam gasification, Energy Fuels. 21 (2007) 2883-2891.
DOI: 10.1021/ef7002443
Google Scholar
[12]
A. Demirbas, Relationship between initial moisture content and the liquid yield from pyrolysis of sawdust, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 27 (2005) 823 – 830.
DOI: 10.1080/00908310490479042
Google Scholar
[13]
J. L. Shie, F.J. Tsou, K. L. Lin, Ch.Y. Chang, Bioenergy and products from thermal pyrolysis of rice straw using plasma torch, Biores. Tech. 101 (2010) 761–768.
DOI: 10.1016/j.biortech.2009.08.072
Google Scholar
[14]
Q. Liu, H. Hu, Q. Zhou, S. Zhu, G. Chen, Effect of inorganic matter on reactivity and kinetics of coal pyrolysis. Fuel. 83 (2004) 713-718.
DOI: 10.1016/j.fuel.2003.08.017
Google Scholar
[15]
M.M. Barbooti, T.J. Mohamed, A.A. Hussain, F.O. Abas, Optimization of pyrolysis conditions of scrap tires under inert gas atmosphere, J. Anal. Appl. Pyrol. 72 (2004) 165-170.
DOI: 10.1016/j.jaap.2004.05.001
Google Scholar
[16]
M. R. Islam, H. Haniu, M.R.A. Beg, Liquid fuels and chemical from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties, Fuel. 87 (2008) 3112-3122.
DOI: 10.1016/j.fuel.2008.04.036
Google Scholar
[17]
C. Di Blasi, Modelling chemical and physical processes of wood and biomass pyrolysis, Prog. Energy Comb. Sci, 34 (2008) 47-90.
Google Scholar
[18]
M. Arabiourrutia, G. Lopez, G. Elordi, M. Olazar, R. Aguado, J. Bilbao, Product distribution obtained in tje pyrolysis of tyres in a conical spouted bed reactor, Chem. Eng. Sci. 62 (2007) 5271 – 5275.
DOI: 10.1016/j.ces.2006.12.026
Google Scholar
[19]
S. Boxiong, W. Chunfei, C. Liang, G. Binbin, W. Rui, Pyrolysis of waste tyres: The influence of USY catalys/tyre ratio on products, J. Anal. Appl. Pyrol. 78 (2006) 243-249.
DOI: 10.1016/j.jaap.2006.07.004
Google Scholar
[20]
A. Magdziarz, S. Werle, Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS, Waste Manag. 34 (2014) 174-179.
DOI: 10.1016/j.wasman.2013.10.033
Google Scholar
[21]
A.G. Barneto, J.A. Carmona, J.E.M. Alfonso, J.D. Blanco, Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost, J. Anal. Appl. Pyrol. 86 (2009) 108-114.
DOI: 10.1016/j.jaap.2009.04.011
Google Scholar
[22]
P. Thipkhunthod, V. Meeyoo, P. Rangsunvigit, T. Rirksomboon, Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition, J. Anal. Appl. Pyrolysis 79 (2007) 78-85.
DOI: 10.1016/j.jaap.2006.10.005
Google Scholar
[23]
J. Heikkinen, J. Hordijk, W. de Jong, H. Spliethoff, Thermogravimetry as a tool to classify waste components to be used for energy generation, J. Anal. Appl. Pyrolysis 71 (2004) 883-900.
DOI: 10.1016/j.jaap.2003.12.001
Google Scholar
[24]
E. Biagini, F. Lippi, L. Petarca, L. Tognotti. Devolatilization rate of biomasses and coal–biomass blends: an experimental investigation, Fuel. 81 (2002) 1041-1050.
DOI: 10.1016/s0016-2361(01)00204-6
Google Scholar
[25]
J.A. Menéndez, A. Domínguez, M. Inguanzo, J.J. Pis, Microwave pyrolysis of sewage sludge: analysis of the gas fraction. J. Anal. Appl. Pyrol. 71 (2004) 657-667.
DOI: 10.1016/j.jaap.2003.09.003
Google Scholar
[26]
K. M. Bryden, M. J. HAGGE, Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle, Fuel. 82 (2003) 1633-1644.
DOI: 10.1016/s0016-2361(03)00108-x
Google Scholar