Investigation of the Effects of Hygienization and Moisture Content of Sewage Sludge on Pyrolysis Products

Article Preview

Abstract:

The effects of hygienization and moisture content on pyrolysis of sewage sludge obtained from wastewater treatment plants were examined in this study. The sewage sludge samples with CaO, without CaO, dry and wet (70 wt.% moisture) were used. The pyrolysis experiments were conducted in two reactor setups at 750 °C and 850 °C. The effect of pyrolysis temperature, heating rate on the gaseous pyrolysis products as well as thermal behavior of sewage sludge were investigated. The CaO addition increased the total yield of pyrolysis gaseous products, whereas moisture significantly increased CO2 production as well as CO and CH4.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 926-930)

Pages:

4263-4271

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Werther, T. Ogada, Sewage sludge combustion, Prog. Energy Comb. Sci. 25 (1999) 55-116.

DOI: 10.1016/s0360-1285(98)00020-3

Google Scholar

[2] D. Fytili, A. Zabaniotou, Utilization of sewage sludge in EU application of old and new methods-A review, Renew. Sust. Energy Rev. 12 (2008) 116-140.

DOI: 10.1016/j.rser.2006.05.014

Google Scholar

[3] G. Gasco, M.J. Cueto, A. Méndez, The effect of acid treatment on the pyrolysis behavior of sewage sludges, J. Anal. Appl. Pyrol. 80 (2007) 496-501.

DOI: 10.1016/j.jaap.2007.03.009

Google Scholar

[4] M. Inguanzo, A. Dominguez, J. A. Mendéz, C. G. Blanco, J. J. Pis, On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions, J. Anal. Appl. Pyrol. 63 (2002) 209-222.

DOI: 10.1016/s0165-2370(01)00155-3

Google Scholar

[5] K.H. Lin, H.T. Hsu, Y.W. KO, Z.X. Shieh, H.L. Chiang, Pyrolytic product characteristics of biosludge from the wastewater treatment plant of a petrochemical industry, J. Hazard. Mater. 171 (2009) 208-214.

DOI: 10.1016/j.jhazmat.2009.05.127

Google Scholar

[6] M. E. Sánchez, J. A. Menéndez, A. Domínguez, J. J. Pis, O. Martínez, L. F. Calvo, P. L. Bernad, Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge, Biom. Bioener. 33 (2009) 933-940.

DOI: 10.1016/j.biombioe.2009.02.002

Google Scholar

[7] J. A. Conesa, A. Marcilla, R. Moral, J. Moreno-Caselles, A. Perez-Espinosa, Evolution of gases in the primary pyrolysis of different sewage sludges, Thermochim. Acta 313 (1998) 63-73.

DOI: 10.1016/s0040-6031(97)00474-7

Google Scholar

[8] J. A. Caballero, R. Front, A. Marcilla, J. A. Conesa, Characterization of sewage sludges by primary and secondary pyrolysis, J. Anal. Appl. Pyrol. 40-41 (1997) 433-450.

DOI: 10.1016/s0165-2370(97)00045-4

Google Scholar

[9] A.V. Bridgwater, D. Meier, D. Radlein, An overview of fast pyrolysis of biomass, Org. Geochem. 30 (1999) 1479–1493.

DOI: 10.1016/s0146-6380(99)00120-5

Google Scholar

[10] A. Domínguez, J.A. Menéndez, J.J. Pis, Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature, J. Anal. Appl. Pyrol. 77 (2006) 127-132.

DOI: 10.1016/j.jaap.2006.02.003

Google Scholar

[11] K. Yip, H. Wu, D. Zhang, Effect of inherent moisture in collie coal during pyrolysis due to in-situ steam gasification, Energy Fuels. 21 (2007) 2883-2891.

DOI: 10.1021/ef7002443

Google Scholar

[12] A. Demirbas, Relationship between initial moisture content and the liquid yield from pyrolysis of sawdust, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 27 (2005) 823 – 830.

DOI: 10.1080/00908310490479042

Google Scholar

[13] J. L. Shie, F.J. Tsou, K. L. Lin, Ch.Y. Chang, Bioenergy and products from thermal pyrolysis of rice straw using plasma torch, Biores. Tech. 101 (2010) 761–768.

DOI: 10.1016/j.biortech.2009.08.072

Google Scholar

[14] Q. Liu, H. Hu, Q. Zhou, S. Zhu, G. Chen, Effect of inorganic matter on reactivity and kinetics of coal pyrolysis. Fuel. 83 (2004) 713-718.

DOI: 10.1016/j.fuel.2003.08.017

Google Scholar

[15] M.M. Barbooti, T.J. Mohamed, A.A. Hussain, F.O. Abas, Optimization of pyrolysis conditions of scrap tires under inert gas atmosphere, J. Anal. Appl. Pyrol. 72 (2004) 165-170.

DOI: 10.1016/j.jaap.2004.05.001

Google Scholar

[16] M. R. Islam, H. Haniu, M.R.A. Beg, Liquid fuels and chemical from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties, Fuel. 87 (2008) 3112-3122.

DOI: 10.1016/j.fuel.2008.04.036

Google Scholar

[17] C. Di Blasi, Modelling chemical and physical processes of wood and biomass pyrolysis, Prog. Energy Comb. Sci, 34 (2008) 47-90.

Google Scholar

[18] M. Arabiourrutia, G. Lopez, G. Elordi, M. Olazar, R. Aguado, J. Bilbao, Product distribution obtained in tje pyrolysis of tyres in a conical spouted bed reactor, Chem. Eng. Sci. 62 (2007) 5271 – 5275.

DOI: 10.1016/j.ces.2006.12.026

Google Scholar

[19] S. Boxiong, W. Chunfei, C. Liang, G. Binbin, W. Rui, Pyrolysis of waste tyres: The influence of USY catalys/tyre ratio on products, J. Anal. Appl. Pyrol. 78 (2006) 243-249.

DOI: 10.1016/j.jaap.2006.07.004

Google Scholar

[20] A. Magdziarz, S. Werle, Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS, Waste Manag. 34 (2014) 174-179.

DOI: 10.1016/j.wasman.2013.10.033

Google Scholar

[21] A.G. Barneto, J.A. Carmona, J.E.M. Alfonso, J.D. Blanco, Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost, J. Anal. Appl. Pyrol. 86 (2009) 108-114.

DOI: 10.1016/j.jaap.2009.04.011

Google Scholar

[22] P. Thipkhunthod, V. Meeyoo, P. Rangsunvigit, T. Rirksomboon, Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition, J. Anal. Appl. Pyrolysis 79 (2007) 78-85.

DOI: 10.1016/j.jaap.2006.10.005

Google Scholar

[23] J. Heikkinen, J. Hordijk, W. de Jong, H. Spliethoff, Thermogravimetry as a tool to classify waste components to be used for energy generation, J. Anal. Appl. Pyrolysis 71 (2004) 883-900.

DOI: 10.1016/j.jaap.2003.12.001

Google Scholar

[24] E. Biagini, F. Lippi, L. Petarca, L. Tognotti. Devolatilization rate of biomasses and coal–biomass blends: an experimental investigation, Fuel. 81 (2002) 1041-1050.

DOI: 10.1016/s0016-2361(01)00204-6

Google Scholar

[25] J.A. Menéndez, A. Domínguez, M. Inguanzo, J.J. Pis, Microwave pyrolysis of sewage sludge: analysis of the gas fraction. J. Anal. Appl. Pyrol. 71 (2004) 657-667.

DOI: 10.1016/j.jaap.2003.09.003

Google Scholar

[26] K. M. Bryden, M. J. HAGGE, Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle, Fuel. 82 (2003) 1633-1644.

DOI: 10.1016/s0016-2361(03)00108-x

Google Scholar