ESD Failure Analysis and Robustness Design in Vertical-Diffused MOS Transistors

Article Preview

Abstract:

This paper deals with a detailed study of ESD failure mode and how to strengthen of the VDMOS used for power applications. The ESD post-zapped failure of power VDMOS transistors due to HBM, MM, and CDM stresses are examined in this work. Through standard failure analysis techniques by using EMMI and SEM were applied to identify the failure locations. The MM failure mode in this power MOSFET was caused by the gate oxide breakdown near n+ region in the source end as an ESD zapping. And, the ESD failure damage under HBM and CDM stresses were caused by the gate material molten near the gate pad and tunneled through the oxide layer into silicon epitaxial layer. Furthermore, the ESD robustness designs of power VDMOS transistors are also addressed in this work. The first ESD incorporated design is Zener diodes back-to-back clamping the gate-to-source pad, and on the other hand, another one excellent design contains two Zener diodes clamping the gate-to-source and gate-to-drain terminals of a VDMOS, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 926-930)

Pages:

456-461

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Galluzzo, M. Melito, S. Musumeci, M. Saggio, A. Raciti, A new high voltage power MOSFET for power conversion applications, IEEE Industry Applications Conference. (2000) 2966-2973.

DOI: 10.1109/ias.2000.882588

Google Scholar

[2] T. Matsukawa, K. Shimada, M. Shioyama, J. Nomura, T. Takaku, S. Tsuji-Iio, R. Shimada, Advanced application of power-MOSFET to large capacity converter, Proceedings of the Power Conversion Conference. (2002) 1170-1175.

DOI: 10.1109/pcc.2002.998138

Google Scholar

[3] H.P.E. Xu, O.P. Trescases, L. -S.M. Sun, D. Lee, W.T. Ng, K. Fukumoto, A. Ishikawa, Y. Furukawa, H. Imai, T. Naito, S. Tamura, K. Takasuka, T. Kohno, Design of a rugged 60 V VDMOS transistor, IET Circuits, Devices & Systems. (2007) 327-331.

DOI: 10.1049/iet-cds:20070008

Google Scholar

[4] Sung-Roc Jang, Hong-Je Ryoo, G. Goussev, Geun Hie Rim, Comparative Study of MOSFET and IGBT for High Repetitive Pulsed Power Modulators, IEEE Transactions on Plasma Science. 40 (2012) 2561-2568.

DOI: 10.1109/tps.2012.2186592

Google Scholar

[5] P. Iyengar, T.C. Lim, S.J. Finney, B.W. Williams, M.A. Sinclair, Design and analysis of an enhanced MOSFET gate driver for pulsed power applications, IEEE Transactions on Dielectrics and Electrical Insulation. 20 (2013) 1136-1145.

DOI: 10.1109/tdei.2013.6571428

Google Scholar

[6] K.R. Varadarajan, S. Sinkar, T.P.  Chow, A Circuit Simulation Model of a Novel Silicon Lateral Trench Power MOSFET for High Frequency Switching Applications, IEEE Workshops on Computers in Power Electronics. (2006) 306-309.

DOI: 10.1109/compel.2006.305631

Google Scholar

[7] Yali Xiong, Shan Sun, Hongwei Jia, P. Shea, Z.J. Shen, New Physical Insights on Power MOSFET Switching Losses, IEEE Transactions on Power Electronics. 24 (2009) 525-531.

DOI: 10.1109/tpel.2008.2006567

Google Scholar

[8] Sungmo Young, Wonsuk Choi, Switching loss estimation of high voltage power MOSFET in power factor correction pre-regulator. Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition. (2011) 463-467.

DOI: 10.1109/apec.2011.5744637

Google Scholar

[9] Wonsuk Choi, Dongkook Son, Sungmo Young, New power MOSFET technologies optimized for efficient and reliable telecommunication power system, Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition. (2012) 1676-1681.

DOI: 10.1109/apec.2012.6166046

Google Scholar

[10] Yoshiaki Toyoda, Hideaki Katakura, Takatoshi Ooe, Masanobu Iwaya, Hitoshi Sumida, 60V-class power IC technology for an intelligentpower switch with an integrated trench MOSFET, 25th International Symposium on Power Semiconductor Devices and ICs. (2013).

DOI: 10.1109/ispsd.2013.6694450

Google Scholar

[11] Ajith Amerasekera, Charvaka Duvvury, ESD in Silicon Integrated Circuits, 2nd ed., John Wiley & Sons Ltd, USA, (2003).

Google Scholar

[12] Juin J. Liou, Challenges of electrostatic discharge (ESD) protection in silicon nanowire technology, 28th International Conference on Microelectronics. (2012) 11-13.

DOI: 10.1109/miel.2012.6222788

Google Scholar

[13] Martin Sauter, Joost Willemen, Simulation and modelling of VDMOSFET self protection under TLP-stress, Microelectronics Reliability. 50 (2010) 183-189.

DOI: 10.1016/j.microrel.2009.10.007

Google Scholar

[14] ESD Association STM5. 3. 2, Socketed Device Model Test on a Component Integrated Circuit Device, (2003).

Google Scholar

[15] JEDEC Standard JESD22-A115C, Electrostatic Discharge (ESD) Sensitivity Testing, Machine Model (MM), (2010).

Google Scholar

[16] MIL-STD-883J, Method 3015. 9, Electrostatic discharge sensitivity classification. (2013) 1-6.

Google Scholar