[1]
M. Lockett, M.J.H. Simmons and K. Kendall, CFD to predict temperature profile for scale up of micro tubular SOFC stacks, J. Power. Sources. 131 (2004) 243 – 246.
DOI: 10.1016/j.jpowsour.2003.11.082
Google Scholar
[2]
J.L. O Gerardo, H. Joshua, T. Harry and S.H. Yang, Microstructral features of RF - sputtered SOFC anode and electrolyte materials, J. Electroceram . 13 (2004) 691– 695.
DOI: 10.1007/s10832-004-5177-9
Google Scholar
[3]
E. Rezugina, A.L. Thomann, H. Hidalgo, P. Brault, V. Dolique and Y. Tessier, Ni–YSZ films deposited by reactive magnetron sputtering for SOFC applications, Surf. Coat. Technol. 204 (2010) 2376–2380.
DOI: 10.1016/j.surfcoat.2010.01.006
Google Scholar
[4]
N.S. Sochugov, A.A. Soloviev, A.V. Shipilova and V.P. Rotshtein, An ion-plasma technique for formation of anode-supported thin electrolyte films for IT-SOFC applications, Int. J. Hydrogen. Energy. 36 (2011) 5550– 5556.
DOI: 10.1016/j.ijhydene.2011.01.159
Google Scholar
[5]
R. Krishna and J.A. Wesselingh, The maxwell–stefan approach to mass transfer, Chem. Eng. Sci. 52 (1997) 861–911.
DOI: 10.1016/s0009-2509(96)00458-7
Google Scholar
[6]
R. Suwanwarangkul, E. Croiset, M.W. Fowler, P. Douglas, P.L. Entchev and M.A. Douglas, Performance comparison of fick's, dusty – gas and stefan – maxwell models to predict the concentration overpotential of a SOFC anode, J. Power. Sources. 122 (2003).
DOI: 10.1016/s0378-7753(02)00724-3
Google Scholar
[7]
H. Yakabe, M. Hishinuma, M. Uratani, M. Matsuzaki and I. Yasuda, Evaluation and modeling of performance of anode – supported solid oxide fuel cell, J. Power. Sources. 86 (2000) 423– 431.
DOI: 10.1016/s0378-7753(99)00444-9
Google Scholar
[8]
W. Lehnert, J. Meusinger and F. Thom, Modeling of gas transport phenomena in SOFC anodes, J. Power. Sources. 87 (2000 ) 57–63.
DOI: 10.1016/s0378-7753(99)00356-0
Google Scholar
[9]
D. Bouvard and F.F. Lange, Relation between percolation and particle coordination in binary powder mixtures, Acta. Metall. Mater. 39 (1991) 3083–3090.
DOI: 10.1016/0956-7151(91)90041-x
Google Scholar
[10]
P. Costamagna, P. Costa and V. Antonucci, Micro-modeling of solid oxide fuel cell electrodes, Electrochim. Acta. 43 (1998) 375–394.
DOI: 10.1016/s0013-4686(97)00063-7
Google Scholar
[11]
C.H. Kuo and P.K. Gupta, Rigidity and conductivity percolation thresholds in particulate composites, Acta. Metall. Mater. 43 (1995) 397–403.
DOI: 10.1016/0956-7151(95)90296-1
Google Scholar
[12]
M. Suzuki and T. Oshima, Estimation of the co – ordination number in a multi – component mixture of spheres, Powder. Technol. 35 (1983) 159–166.
DOI: 10.1016/0032-5910(83)87004-1
Google Scholar
[13]
P. Chinda, W. Wechsatol, S. Chanchaona and P. Brault, Microscale modeling of an anode-supported planar solid oxide fuel cell, Fuel Cells. 11 (2011) 184– 199.
DOI: 10.1002/fuce.201000121
Google Scholar
[14]
M.M. Hussain, X. Li, and I. Dincer, Mathematical modeling of planar solid oxide fuel cells, J. Power. Sources. 161 (2006) 1012 –1022.
DOI: 10.1016/j.jpowsour.2006.05.055
Google Scholar
[15]
S. Barnett, E. Perry and D. Kaufman, Application of ceria layers to increase low-temperature SOFC power density, Proceedings of the Fuel Cells'97 Review Meeting, West Virginia, U.S.A. (1997) 26–28.
Google Scholar
[16]
S. Jou, T.H. Thin, Porous Ni – YSZ films as anodes for a solid oxide fuel cell", J. Phys. Chem. Solids. 69 (2008) 2804– 2812.
DOI: 10.1016/j.jpcs.2008.07.005
Google Scholar