Cultivation of Chlorella sp. Using Industrial Effluents for Lipid Production

Article Preview

Abstract:

This work aims to investigate microalgal growth and lipid production from Chlorella sp. on different digester effluents from seafood factory, starch factory and palm oil mill. Results under 32 cultivation days showed that the effluent from seafood factory gave the highest microalgal growth (0.9956±0.2121 g/L) followed by starch factory and palm oil mill (0.8622±0.0391 and 0.2611±0.0444 g/L, respectively). Although higher nitrogen and phosphorus in medium stimulated growth, turbidity of the palm oil mill effluent showed a negative impact. In addition, phosphorus concentration in the medium positively affected the lipid content in cells. The seafood effluent with total phosphorus of 45.24±3.80 mg/L yielded highest lipid content at 26.96±1.58% compared to starch factory (22.10±2.61). The digester effluent from seafood factory was found more suitable for Chlorella sp. cultivation due to the high mass production, oil content and lipid productivity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

1111-1116

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Singh, A. Guldhe, I. Rawat, F. Bux, Towards a sustainable approach for development of biodiesel from plant and microalgae, Renew. Sust. Energ. Rev. 29 (2014) 216-245.

DOI: 10.1016/j.rser.2013.08.067

Google Scholar

[2] L. Brennan, P. Owende, Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev. 14 (2010) 557-577.

DOI: 10.1016/j.rser.2009.10.009

Google Scholar

[3] A.L. Moreira, J.M. Dias, M.F. Almeida, M.C.M. Alvim-Ferraz, Biodiesel production through transesterification of poultry fat at 30oC, Energy Fuels. 24 (2010) 5717-5721.

DOI: 10.1021/ef100705s

Google Scholar

[4] L.F. Wu, P.C. Chen, A.P. Huang, C.M. Lee, The feasibility of biodiesel production by microalgae using industrial wastewater, Bioresour. Technol. 113 (2012) 14–18.

DOI: 10.1016/j.biortech.2011.12.128

Google Scholar

[5] A.M. Illman, A.H. Scragg, S.W. Shales, Increase in chlorella strains calorific values when grown in low nitrogen medium, Enzyme Microb. Technol. 27 (2000) 631– 635.

DOI: 10.1016/s0141-0229(00)00266-0

Google Scholar

[6] S. Hama, A. Kondo, Enzymatic biodiesel production: An overview of potential feedstocks and process development, Bioresour. Technol. 135 (2013) 386-395.

DOI: 10.1016/j.biortech.2012.08.014

Google Scholar

[7] I. Rawat, R.R. Kumar, T. Mutanda, F. Bux, Biodiesel from microalgae: A critical evaluation from laboratory to large scale production, Appl Energy. 103 (2013) 444-467.

DOI: 10.1016/j.apenergy.2012.10.004

Google Scholar

[8] M.J. Haas, A.J. Mcaloon, W.C. Yee, T.A. Foglia, A process model to estimate biodiesel production costs, Bioresour. Technol. 97 (2006) 671-678.

DOI: 10.1016/j.biortech.2005.03.039

Google Scholar

[9] X. Yu, P. Zhao, C. He, J. Li, X. Tang, J. Zhou, Z. Huang, Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock, Bioresour. Technol. 121 (2012) 256-262.

DOI: 10.1016/j.biortech.2012.07.002

Google Scholar

[10] Fei-Fei. Chu, Pei-Na Chu, Pei-Jie Cal, Wen-Wei Li, P.K.S. Lam, R.J. Zeng, Phosphorus plays an important role in enhancing biodiesel productivity Of Chlorella vulgaris under nitrogen deficiency, Bioresour. Technol. 134 (2013) 341–346.

DOI: 10.1016/j.biortech.2013.01.131

Google Scholar

[11] K. Vijayaraghavan, K. Hemanathan, Biodiesel production from freshwater algae, Energy Fuels. 23 (2009) 5448-5453.

DOI: 10.1021/ef9006033

Google Scholar

[12] L.E. Graham, Algal, Prentice-Hall Inc, New Jersey, (2000).

Google Scholar

[13] S. Hongyang, Z. Yalei, Z. Chunmin, Z. Xuefei, L. Jinpeng, Cultivation of Chlorella pyrenoidosain soybean processing wastewater, Bioresour. Technol. 102 (2011) 9884–9890.

DOI: 10.1016/j.biortech.2011.08.016

Google Scholar

[14] S. Huo, Z. Wang, S. Zhu, W. Zhou, R. Dong, Z. Yuan, Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wastewater in winter, South China, Bioresour. Technol. 121 (2012) 76-82.

DOI: 10.1016/j.biortech.2012.07.012

Google Scholar

[15] S. Rasoul-Amini, N. Montazeri-Najafabady, S. Shaker, A. Safari, A. Kazemi, P. Mousavi, M.A. Mobasher, Y. Ghasemi, Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system, Biocatal. Agric. Biotechnol. (in press) http: /dx. doi. org/10. 1016/j. bcab. 2013. 09. 003i.

DOI: 10.1016/j.bcab.2013.09.003

Google Scholar

[16] C. Yeesang, B. Cheirsilp, Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand, Bioresour. Technol. 102 (2011) 3034–3040.

DOI: 10.1016/j.biortech.2010.10.013

Google Scholar

[17] P. Dumrattana, P. Tansakul, Effect of photoperiod on growth and hydrocarbon content of Botryococcus braunii cultured in effluent from seafood processing plant, Songklanakarin. J. Sci. Technol. 28 (2006) 99-105.

Google Scholar

[18] J. Folch, M. Lees, G.H.S. Stanley, A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem. 226 (1957) 497–509.

DOI: 10.1016/s0021-9258(18)64849-5

Google Scholar

[19] E. Jacob-Lopes, C.H.G. Scoparo, L.M.C.F. Lacerda, T.T. Franco, Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors, Chem. Eng. Process. 48 (2009) 306–310.

DOI: 10.1016/j.cep.2008.04.007

Google Scholar

[20] W.M. Darley, Algal Biology: A Physiological Approach, Blacwell Scientific Publications, London, (1982).

Google Scholar

[21] A.C. Kuesel, J. Sianoudis, D. Leibfritz, L.H. Grimme, A. Mayer, P-31 in-vivo NMR investigation on the function of polyphosphates as phosphate and energy source during the regreening of the green alga Chlorella fusca, Arch. Microbiol. 152 (1989).

DOI: 10.1007/bf00456096

Google Scholar

[22] Y. Li, Yi-Feng. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, R. Ruan, Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production, Bioresour. Technol. 102 (2011).

DOI: 10.1016/j.biortech.2011.01.091

Google Scholar

[23] A. Benerjee, R. Sharma, Y. Chisti , U.C. Benerjee, Botryococcus braunii : A renewable source of hydrocarbons and other chemicals, Crit. Rev. Biotechnol. 22 (2002) 245-279.

DOI: 10.1080/07388550290789513

Google Scholar

[24] Z. Arbib, J. Ruiz, P. Alvarez-Diaz, C. Garrido-Perez, J.A. Perales, Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production, Water Res. (in press) http: /dx. doi. org/10. 1016/j. watres. 2013. 10. 036.

DOI: 10.1016/j.watres.2013.10.036

Google Scholar