[1]
B. Singh, A. Guldhe, I. Rawat, F. Bux, Towards a sustainable approach for development of biodiesel from plant and microalgae, Renew. Sust. Energ. Rev. 29 (2014) 216-245.
DOI: 10.1016/j.rser.2013.08.067
Google Scholar
[2]
L. Brennan, P. Owende, Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sust. Energ. Rev. 14 (2010) 557-577.
DOI: 10.1016/j.rser.2009.10.009
Google Scholar
[3]
A.L. Moreira, J.M. Dias, M.F. Almeida, M.C.M. Alvim-Ferraz, Biodiesel production through transesterification of poultry fat at 30oC, Energy Fuels. 24 (2010) 5717-5721.
DOI: 10.1021/ef100705s
Google Scholar
[4]
L.F. Wu, P.C. Chen, A.P. Huang, C.M. Lee, The feasibility of biodiesel production by microalgae using industrial wastewater, Bioresour. Technol. 113 (2012) 14–18.
DOI: 10.1016/j.biortech.2011.12.128
Google Scholar
[5]
A.M. Illman, A.H. Scragg, S.W. Shales, Increase in chlorella strains calorific values when grown in low nitrogen medium, Enzyme Microb. Technol. 27 (2000) 631– 635.
DOI: 10.1016/s0141-0229(00)00266-0
Google Scholar
[6]
S. Hama, A. Kondo, Enzymatic biodiesel production: An overview of potential feedstocks and process development, Bioresour. Technol. 135 (2013) 386-395.
DOI: 10.1016/j.biortech.2012.08.014
Google Scholar
[7]
I. Rawat, R.R. Kumar, T. Mutanda, F. Bux, Biodiesel from microalgae: A critical evaluation from laboratory to large scale production, Appl Energy. 103 (2013) 444-467.
DOI: 10.1016/j.apenergy.2012.10.004
Google Scholar
[8]
M.J. Haas, A.J. Mcaloon, W.C. Yee, T.A. Foglia, A process model to estimate biodiesel production costs, Bioresour. Technol. 97 (2006) 671-678.
DOI: 10.1016/j.biortech.2005.03.039
Google Scholar
[9]
X. Yu, P. Zhao, C. He, J. Li, X. Tang, J. Zhou, Z. Huang, Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock, Bioresour. Technol. 121 (2012) 256-262.
DOI: 10.1016/j.biortech.2012.07.002
Google Scholar
[10]
Fei-Fei. Chu, Pei-Na Chu, Pei-Jie Cal, Wen-Wei Li, P.K.S. Lam, R.J. Zeng, Phosphorus plays an important role in enhancing biodiesel productivity Of Chlorella vulgaris under nitrogen deficiency, Bioresour. Technol. 134 (2013) 341–346.
DOI: 10.1016/j.biortech.2013.01.131
Google Scholar
[11]
K. Vijayaraghavan, K. Hemanathan, Biodiesel production from freshwater algae, Energy Fuels. 23 (2009) 5448-5453.
DOI: 10.1021/ef9006033
Google Scholar
[12]
L.E. Graham, Algal, Prentice-Hall Inc, New Jersey, (2000).
Google Scholar
[13]
S. Hongyang, Z. Yalei, Z. Chunmin, Z. Xuefei, L. Jinpeng, Cultivation of Chlorella pyrenoidosain soybean processing wastewater, Bioresour. Technol. 102 (2011) 9884–9890.
DOI: 10.1016/j.biortech.2011.08.016
Google Scholar
[14]
S. Huo, Z. Wang, S. Zhu, W. Zhou, R. Dong, Z. Yuan, Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wastewater in winter, South China, Bioresour. Technol. 121 (2012) 76-82.
DOI: 10.1016/j.biortech.2012.07.012
Google Scholar
[15]
S. Rasoul-Amini, N. Montazeri-Najafabady, S. Shaker, A. Safari, A. Kazemi, P. Mousavi, M.A. Mobasher, Y. Ghasemi, Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system, Biocatal. Agric. Biotechnol. (in press) http: /dx. doi. org/10. 1016/j. bcab. 2013. 09. 003i.
DOI: 10.1016/j.bcab.2013.09.003
Google Scholar
[16]
C. Yeesang, B. Cheirsilp, Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand, Bioresour. Technol. 102 (2011) 3034–3040.
DOI: 10.1016/j.biortech.2010.10.013
Google Scholar
[17]
P. Dumrattana, P. Tansakul, Effect of photoperiod on growth and hydrocarbon content of Botryococcus braunii cultured in effluent from seafood processing plant, Songklanakarin. J. Sci. Technol. 28 (2006) 99-105.
Google Scholar
[18]
J. Folch, M. Lees, G.H.S. Stanley, A simple method for the isolation and purification of total lipides from animal tissues, J. Biol. Chem. 226 (1957) 497–509.
DOI: 10.1016/s0021-9258(18)64849-5
Google Scholar
[19]
E. Jacob-Lopes, C.H.G. Scoparo, L.M.C.F. Lacerda, T.T. Franco, Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors, Chem. Eng. Process. 48 (2009) 306–310.
DOI: 10.1016/j.cep.2008.04.007
Google Scholar
[20]
W.M. Darley, Algal Biology: A Physiological Approach, Blacwell Scientific Publications, London, (1982).
Google Scholar
[21]
A.C. Kuesel, J. Sianoudis, D. Leibfritz, L.H. Grimme, A. Mayer, P-31 in-vivo NMR investigation on the function of polyphosphates as phosphate and energy source during the regreening of the green alga Chlorella fusca, Arch. Microbiol. 152 (1989).
DOI: 10.1007/bf00456096
Google Scholar
[22]
Y. Li, Yi-Feng. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, R. Ruan, Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production, Bioresour. Technol. 102 (2011).
DOI: 10.1016/j.biortech.2011.01.091
Google Scholar
[23]
A. Benerjee, R. Sharma, Y. Chisti , U.C. Benerjee, Botryococcus braunii : A renewable source of hydrocarbons and other chemicals, Crit. Rev. Biotechnol. 22 (2002) 245-279.
DOI: 10.1080/07388550290789513
Google Scholar
[24]
Z. Arbib, J. Ruiz, P. Alvarez-Diaz, C. Garrido-Perez, J.A. Perales, Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production, Water Res. (in press) http: /dx. doi. org/10. 1016/j. watres. 2013. 10. 036.
DOI: 10.1016/j.watres.2013.10.036
Google Scholar