Determination of Thermodynamic Parameters of Zinc (II) Adsorpton on Pulp Waste as Biosorbent

Article Preview

Abstract:

Dried pulp waste, a manufactured solid waste by product was used as a biosorbent for the removal zinc (II) from aqueous solution. A series of experiments were conducted in a batch system to evaluate the thermodynamic parameters of the pulp waste for zinc (II) removal at an initial pH value of 6.0, ZnCl2 concentration of 50-200 ppm and temperature 30-50 °C. Thermodynamic parameters, such as Gibbs free energy change (ΔG°), enthalpy (ΔH°) and entropy (ΔS°), evaluation of zinc (II) adsorption on pulp waste showed that the adsorption process under the selected conditions was spontaneous and endothermic nature for all concentration and temperature studied. The activation energy of zinc (II) adsorption (Ea) was determined using modified Arrhenius equation as 1.89, 3.76, 4.73 and 6.46 kJ/mol at different concentration 50, 100, 150 and 200 ppm, respectively. The sticking probability (SP*) was also evaluated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 931-932)

Pages:

215-219

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage.  92 (2011) 407-418.

Google Scholar

[2] A. Demirbas, Heavy metal adsorption onto agro-based waste materials: A review, J. Hazard. Mater. 157 (2008) 220-229.

DOI: 10.1016/j.jhazmat.2008.01.024

Google Scholar

[3] L. Rink, P. Gabriel, Zinc and the immune system, Proc Nutr Soc. 59 (2000) 541-52.

Google Scholar

[4] W. Maret, H.H. Sandstead, Zinc requirements and the risks and benefits of zinc supplementation, J. Trace Elem Med Biol. 20 (2006) 3-18.

DOI: 10.1016/j.jtemb.2006.01.006

Google Scholar

[5] Gakwisiri, N. Raut, A. Al-Saadi, S. Al-Aisri, A. Al-Ajmi, A Critical Review of Removal of Zinc from Wastewater, WCE 2012. 1 (2012).

Google Scholar

[6] N.K. Srivastava, C.B. Majumder, Novel biofiltration methods for the treatment of heavy metals from from industrial wastewater, J. Hazard. Mater. 177 (2008) 70-80.

Google Scholar

[7] V.K. Gupta I. Ali, Utilization of bagasse fly ash (a sugar industry wastes for the removal of copper and zinc from wastewater, Sep. Purif. Technol. 18 (2000) 131-140.

DOI: 10.1016/s1383-5866(99)00058-1

Google Scholar

[8] L. Bois, A. Bonhomme, A. Ribes, B. Pais, G. Raffin, F. Tessier, Functionalized silica for heavy metals ions adsorption, Colloids Surf. Physicohem. Eng. Aspects. 221 (2003) 221-230.

DOI: 10.1016/s0927-7757(03)00138-9

Google Scholar

[9] N. Basci, E. Kocadagistan, B. Kocadagistan, Biosorption of copper (II) from aqueous solutions by wheat shell, Desalination. 164 (2004) 135-140.

DOI: 10.1016/s0011-9164(04)00172-9

Google Scholar

[10] C.H. Weng, C.Z. Tsai, S.H. Chu, Y.C. Sharma, Adsorption characteristics of copper (II) onto spent activated clay, Sep. Purif. Technol. 54 (2007) 187-197.

DOI: 10.1016/j.seppur.2006.09.009

Google Scholar

[11] W. Li, S. Zhang, X-q. Shan, Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption, Colloids Surf. Physicohem Eng. Aspects. 293 (2007) 13-19.

DOI: 10.1016/j.colsurfa.2006.07.002

Google Scholar

[12] P. Sampranpiboon, P. Charnkeitkong, Equilibrium isotherm, thermodynamic and kinetic studies of lead adsorption onto pineapple and paper wastes, International J. Energy and Environ. 4 (2010) 88-97.

Google Scholar

[13] T. Nalini, P. Nagarajan, Kinetic and thermodynamic study of removal of copper from aqueous solution using Senna uniflora (mill), J. Chem. Pharm. Res. 5 (2013) 208-215.

Google Scholar

[14] S. Wanga, , Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J. 156 (2010)11-24.

Google Scholar

[15] E.L. Foletto, G.C. Collazzo, M.A. Mazutti, S.L. Jahn, Adsorption of Textile Dye on Zinc Stannate Oxide: Equilibrium, Kinetic and Thermodynamics Studies, Sep. Sci. Technol. 46 (2011) 2510–2516.

DOI: 10.1080/01496395.2011.597039

Google Scholar

[16] K. Li, Z. Liu, T. Wen, L. Chen, Y. Dong, Sorption of radiocobalt(II) onto Ca-montmorillonite: effect of contact time, solid content, pH, ionic strength and temperature, J. Radioanal. Nucl. Chem. 292 (2012) 269–276.

DOI: 10.1007/s10967-011-1400-8

Google Scholar

[17] B.K. Nandi, A. Goswami, M.K. Purkait, Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater. 161 (2009) 387-395.

DOI: 10.1016/j.jhazmat.2008.03.110

Google Scholar

[18] M. Alkan, M. Dog˘an, Y. Turhan, O. Demirbasธ, P. Turan, Adsorption ki netics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions, Chem. Eng. J. 139 (2008) 213-223.

DOI: 10.1016/j.cej.2007.07.080

Google Scholar

[19] M. Sathishkumar, A.R. Binupriya, D. Kavitha, S.E. Yun, Kinetic and isothermal studies on liquid-phase adsorption of 2, 4-dichlorophenol by palm pith carbon. Biores. Technol. 98 (2007) 866-891.

DOI: 10.1016/j.biortech.2006.03.002

Google Scholar

[20] P. Ilaiyaraja, Ashish Kumar Singha Deb, K. Sivasubramanian, D. Ponraju, B. Venkatraman , Adsorption of uranium from aqueous solution by PAMAM dendron functionalized styrene divinylbenzene, J. Hazard. Mater. 250-251(2013) 155-156.

DOI: 10.1016/j.jhazmat.2013.01.040

Google Scholar

[21] G. Asgaria, B. Roshanib, G. Ghanizadehc, The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone, J. Hazard. Mater. 217–218 (2012) 123–132.

DOI: 10.1016/j.jhazmat.2012.03.003

Google Scholar