[1]
H. Liu, H. Darabi, P. Banerjee. Survey of wireless indoor positioning techniques and systems. Systems. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews). 2007; 37(6): 1067-1080.
DOI: 10.1109/tsmcc.2007.905750
Google Scholar
[2]
T.N. Lin, P.C. Lin. Performance comparison of indoor positioning techniques based on location fingerprinting in wireless networks, Wireless Networks Communications and Mobile Computing. 2005; 1569–1574.
DOI: 10.1109/wirles.2005.1549647
Google Scholar
[3]
E. Mok, G. Retscher. Location determination using WiFi fingerprinting versus Wi-Fi trilateration. Journal of Location Based Services. 2007; 1(2): 145–159.
DOI: 10.1080/17489720701781905
Google Scholar
[4]
R. Mautz. Overview of current indoor positioning systems. Geodezija ir kartografija. 2009; 35(1): 18-22.
Google Scholar
[5]
J.R. Quinlan. Induction of decision trees. Machine learning, 1986, 1. 1: 81-106.
Google Scholar
[6]
G.H. John, P. Langley. Estimating continuous distributions in Bayesian classifiers.
Google Scholar
[7]
M.T. Hagan, H.B. Demuth, M.H. Beale. Neural network design. Boston: Pws Pub., 1996. pp.2-14.
Google Scholar
[8]
P. Bahl, V.N. Padmanabhan. RADAR: An in-building RF-based user location and tracking system. In: INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE. IEEE, 2000. pp.775-784.
DOI: 10.1109/infcom.2000.832252
Google Scholar
[9]
A. LaMarca, Y. Chawathe, S. Consolvo, J Hightower. Place lab: Device positioning using radio beacons in the wild. In: Pervasive Computing. Springer Berlin Heidelberg, 2005. pp.116-133.
DOI: 10.1007/11428572_8
Google Scholar
[10]
D. Madigan, E. Einahrawy, R.P. Martin. Bayesian indoor positioning systems. In: INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE. IEEE, 2005. pp.1217-1227.
DOI: 10.1109/infcom.2005.1498348
Google Scholar
[11]
O.M. Badawy, M.A.B. Hasan. Decision tree approach to estimate user location in WLAN based on location fingerprinting. In: Radio Science Conference, 2007. NRSC 2007. National. IEEE, 2007. pp.1-10.
DOI: 10.1109/nrsc.2007.371395
Google Scholar
[12]
M. Brunato, R. Battit. Statistical learning theory for location fingerprinting in wireless LANs. Computer Networks, 2005, 47. 6: 825-845.
DOI: 10.1016/j.comnet.2004.09.004
Google Scholar
[13]
I.H. Witten, E Frank, MA Hall. Data Mining: Practical Machine Learning Tools and Techniques: Practical Machine Learning Tools and Techniques. Elsevier, (2011).
DOI: 10.1016/b978-0-12-374856-0.00015-8
Google Scholar