[1]
Wang Kehai, Research on Aseismic Design of Bridges, 1st ed. Beijing: China Railway Publishing House, (2007).
Google Scholar
[2]
Kazuhiko Kawashima, and Kinji Hasegawa, New seismic design specifications of highway bridges in Japan, Earthquake spectra, vol. 10, pp.333-356, April (1994).
DOI: 10.1193/1.1585777
Google Scholar
[3]
G. A. MacRae, and Kazuhiko Kawashima, Post-earthquake residual displacements of bilinear oscillators, Earthquake Engineering & Structural Dynamics, vol. 26, pp.701-716, (1997).
DOI: 10.1002/(sici)1096-9845(199707)26:7<701::aid-eqe671>3.0.co;2-i
Google Scholar
[4]
Kazuhiko Kawashima, and G.A. MacRae, et al, Residual Displacement Response Spectrum, Journal of Structural Engineering, vol. 124, pp.523-530, (1998).
DOI: 10.1061/(asce)0733-9445(1998)124:5(523)
Google Scholar
[5]
Kazuhiko Kawashima, and Kinji Hasegawa. Experimental investigation on nonlinear seismic response of bridge columns and accuracy of equal energy assumption, Proc. Japan Soc. of Civ. Engrg., vol. 483, pp.137-146, (1994).
DOI: 10.2208/jscej.1994.483_137
Google Scholar
[6]
P. Fajfar, and H. Krawinkler, Seismic Design Methodologies for the Next Generation of Codes, Rotterdam, Netherlands, (1996).
DOI: 10.1201/9780203740019
Google Scholar
[7]
LV Xilin, CHEN Yun, and MAO Yuanjun, New Concept of Structural Seismic Design: Earthquake Resilient Structures, Journal of Tongji University (Natural Science), vol. 39, pp.941-948, (2011).
Google Scholar
[8]
M. J. Nigel Priestley, Seismic Design Philosophy for Precast Concrete Frames, Structural Engineering International, vol. 6, pp.25-31, (1996).
DOI: 10.2749/101686696780496003
Google Scholar
[9]
J. Stanton, W. C. Stone, and G. S. Cheok, A hybrid reinforced precast frame for seismic regions, PCI Journal, vol. 42, pp.20-32, (1997).
DOI: 10.15554/pcij.03011997.20.23
Google Scholar
[10]
S. Pampanin, M. J . Nigel Priestley, et al, Analytical modeling of the seismic behavior of precast concrete frames designed with ductile connections, Journal of Structural Engineering, vol. 5, pp.329-367, (2001).
DOI: 10.1080/13632460109350397
Google Scholar
[11]
C. Christopoulos, A. Filiatrault, C. M. Uang, et al, Energy Dissipating Connections for Moment-Resisting Steel Frames, Journal of Structural Engineering, vol. 128, pp.1111-1120, (2002).
DOI: 10.1061/(asce)0733-9445(2002)128:9(1111)
Google Scholar
[12]
C. Christopoulos, A. Filiatrault, et a, Seismic response of self-centring hysteretic SDOF systems, Earthquake Engineering and Structural Dynamics, vol. 31, pp.1131-1150, (2002).
DOI: 10.1002/eqe.152
Google Scholar
[13]
Wing-Pin Kwan, Unbonded Posttensioned Concrete Bridge Piers. II: Seismic Analyses, Journal of Bridge Engineering, vol. 8, pp.102-111, (2003).
DOI: 10.1061/(asce)1084-0702(2003)8:2(102)
Google Scholar
[14]
B. M. John, and Cheng Chin Tung, Seismic Resistance of Bridge Piers Based on Damage Avoidance Design, Technical Report NCEER-97-0014, vol. 109, (1997).
Google Scholar
[15]
Y. C. Kurama, R. Sause etal, Seismic Response Evaluation of Unbonded Post-tensioned Precast Walls, ACI Structural Journal, vol. 99, pp.641-651, (2002).
DOI: 10.14359/12304
Google Scholar
[16]
Palermo, S. Pampanin et al, Use of "controlled rocking" in the seismic design of bridges, in Proceedings of 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, (2004).
Google Scholar
[17]
S. Pampanin, Emerging Solutions for High Seismic Performance of Precast/Prestressed Concrete Buildings, Journal of Advanced Concrete Technology, vol. 3, pp.207-223, (2005).
DOI: 10.3151/jact.3.207
Google Scholar
[18]
D. Marriott, A. Palermo, and S. Pampanin, Quasi-static and pseudo-dynamic testing of damage resistant bridge piers with hybrid connections, in Proceedings of First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, (2006).
DOI: 10.1002/eqe.857
Google Scholar
[19]
D. Marriott, S. Pampanin, and A. Palermo. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters , Earthquake Engineering and Structural Dynamics, vol. 38, pp.331-354, (2009).
DOI: 10.1002/eqe.857
Google Scholar
[20]
D. Marriott, S. Pampanin, and A. Palermo, Biaxial testing of unbonded post-tensioned rocking bridge piers with external replacable dissipaters, Earthquake Engineering and Structural Dynamics, vol. 40, p.1723–1741, Dec. (2011).
DOI: 10.1002/eqe.1112
Google Scholar
[21]
J. GUO, K. G. XIN, M. HE, and L. HU, An analytical model of a self-centering bridge pier system, " in Proc. 20th National Structural Engineering Semina, Ningbo China, 2011, pp.294-300.
Google Scholar
[22]
M. H. HE, K. G. XIN, and J. GUO, Local Stability Study of New Bridge Piers with Self-centering Joints, Engineering Mechanics, vol. 29, pp.122-127, April, (2012).
Google Scholar
[23]
J. GUO, K. G. XIN, M.H. HE, Experimental study and analysis on the seismic performance of a self-centering bridge pier, Engineering Mechanics, vol. 2Suppl. I, pp.29-34, June, (2012).
Google Scholar