[1]
Li, V.C. and C.K.Y. Leung, Steady-state and multiple cracking of short random fiber composites. Journal of engineering mechanics, 118(1992) 2246-2264.
DOI: 10.1061/(asce)0733-9399(1992)118:11(2246)
Google Scholar
[2]
Li, V.C. and H.C. Wu, Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites. Applied mechanics revolution, 45(1992) 390-398.
DOI: 10.1115/1.3119767
Google Scholar
[3]
Li, V.C., From micromechanics to structural engineering-the design of cementitious composites for civil engineering applications. Journal of structure mechanical earthquake engineering, 10(1993) 37-48.
Google Scholar
[4]
Leung, C.K.Y., Design criteria for pseudo-ductile fiber composites. ASCE Journal of engineering mechanics, 122(1995) 10-18.
Google Scholar
[5]
Lin, Z. and V.C. Li, Crack Bridging In Fiber Reinforced Cementitious Composites With Slip-Hardening Interfaces. J. Mechanical Physics Solids, 45(1997) l63-181.
DOI: 10.1016/s0022-5096(96)00095-6
Google Scholar
[6]
Kanda, T., V.C. Li, and M. ASCE, New Micromechanics design theory for pseudostrain hardness cementitious composite. Journal of engineering mechanics, 125(1999) 373-381.
DOI: 10.1061/(asce)0733-9399(1999)125:4(373)
Google Scholar
[7]
Li, V.C., H.C. Wu, and Y.W. Chan. Interfacial property tailoring for pseudo strain-hardening cementitious composites. In proceedings of advanced technology on design and fabrication of composite materials and structures, 1995. Netherlands.
DOI: 10.1007/978-94-015-8563-7_18
Google Scholar
[8]
Li, V.C., D. K. Mishra, and H. -C. Wu, Matrix design for pseudo-strain-hardening fiber reinforced cementitious composites. Materials and structures, 28(1995)586-595.
DOI: 10.1007/bf02473191
Google Scholar
[9]
Wang, S. and V.C. Li. Tailoring of Pre-existing flaw in ECC matrix for saturated strain hardening. In proceedings of the fifth International Conference on Fracture Mechanics of Concrete and Concrete Structures. 2004. Vail, Colorado, USA.
Google Scholar
[10]
Li, Z., F. Li, and J.S.L. Li, Properties of concrete incorporating rubber type particles. Magazine of concrete research, 50(1998) 297-304.
DOI: 10.1680/macr.1998.50.4.297
Google Scholar
[11]
Topcu, I.B. and N. Avcular, Collision behaviours of rubberized concrete. Cement and concrete research, 27(1997)1893-1898.
DOI: 10.1016/s0008-8846(97)00204-4
Google Scholar
[12]
Hernandez-Olivares, F., et al., Static and dynamic behaviour of recycled tyre rubber-filled concrete. Cement and Concrete Research, 32(2002) 1587-1596.
DOI: 10.1016/s0008-8846(02)00833-5
Google Scholar
[13]
Al-Akhras, N.M. and M.M. Smadi, Properties of tire rubber ash mortar. Cement and concrete composites, 26(2004) 821-826.
DOI: 10.1016/j.cemconcomp.2004.01.004
Google Scholar
[14]
Ludirdja, D., R.L. Berger, and F. Young, Simple method for measuring water permeability of concrete. ACI materials Journal, 86(1990) 433-439.
Google Scholar
[15]
Lepech, M. and Li, V.C., Water permeability of cracked cementitious composites, Proceedings of ICF11, Turin, Italy.
Google Scholar
[16]
Wang, K.J., et al., Permeability study of cracked concrete. Cement and concrete research, 27(1997) 381-393.
DOI: 10.1016/s0008-8846(97)00031-8
Google Scholar